Process Mining in Action

プロセスマイニングを実践するために役立つポイントを解説しています。

プロセスマイニング ライフサイクル – Process Mining Life Cycle

「プロセスマイニング」を実際に自社に導入し、継続的に運用する場合に、基本的には下図のような流れで進めていきます。

標準的なプロセスマイニング分析手順はこちら


スコーピング – Scoping

プロセスマイニングの起点は左上の「スコーピング」です。スコーピングは、「分析計画作成」と言い換えたほうが理解しやすいでしょう。プロセスマイニングは、ビッグデータを扱うデータマイニングの一種であり、分析手法です。したがって、まずは分析計画を策定する必要があるのです。

スコーピングでは、分析対象となるプロセス(たとえば「購買プロセス」、あるいは「受注プロセス」など)を選定します。当該プロセスの選定にあたっては、なんらか改善すべき課題・問題があるかと思います。そこで、当該プロセスを選定した背景や、想定される課題・問題を併せて明確化します。

さらに、初めて対象プロセスを分析する場合は、「プロジェクト」として、目的・目標設定、およびスケジュールや予算、プロジェクトメンバーをアサインするなど、プロジェクト管理を行えるように計画を固める必要があります。


データの理解 – Understanding data

プロセスマイニングは、業務システム内に記録されている大量のデータから、対象プロセスの分析を行うために必要なデータ項目を特定し、多くの場合SQLで各種DBなどから抽出します。

抽出されたデータもまた巨大であり、複数のファイルに分かれ、多数のデータ項目が含まれています。業務システムが自社開発の独自のものであった場合、データ形式、表記方法、マスターデータがファイルによって微妙に違うこともあります。

基本的に、業務システムから抽出された生データをそのままプロセスマイニングツールにアップロードできることはありません。プロセスマイニングツールで分析可能なイベントログを作るために、なんらかの前処理を行う必要があります。

そこで、適切にデータ前処理を行い、正しいイベントログを作成するために行わなければならないのが、データの理解を深めることです。抽出されたデータの項目一つひとつを確認し、NULL値の扱いはどうなっているのか、マスターファイルはどのようなものか、などなど検証すべき点は多岐にわたります。

また、データそのものを検証するだけではなく、そのデータが生み出された業務システム自体はどのような特徴を持つのか、当該システムに対する理解を深めることも有益でしょう。


イベントログ作成 – Creating event log

プロセスマイニングの対象となるデータは総称して「イベントログ」と呼ばれます。前項で指摘したように、業務システムから抽出した’生’のデータは、しばしば多数のノイズが含まれてますし、ファイルによってタイムスタンプの表示形式が違うなど、そのままではプロセスマイニングツールにアップロードできません。

そこで、基本的にはデータの前処理によって、クリーンなイベントログを作成することが必要になります。データマイニングにおいても、このデータ前処理が全作業の8割を占めると言われますが、プロセスマイニングにおいてもやはり、データ前処理によるイベントログ作成に全行程の大半を割かねばならないケースが多いでしょう。


プロセスマイニング(分析) – Process mining analysis

クリーンなイベントログが作成できたら、プロセスマイニングツールにアップロードし、分析準備完了です。プロセスマイニングツールを操作して以下のような視点で分析を行っていきます。

 ・頻度分析:処理案件数が多くなっている箇所はどこか。業務負荷量に偏りがあるか

 ・所要時間分析:各活動の処理時間(サービスタイム)や、待ち時間(ウェイティングタイム)が長くなっている箇所はどこか。ボトルネックが存在するか。

 ・バリアント分析:発見されたプロセスのバリエーションは何種類くらいあるか。理想的な手順を踏み、リードタイムの短い「ハッピープロセス」は含まれているか

 ・適合性検査:理想プロセス(to beプロセス)と比較して、発見された現行プロセス(as isプロセス)には逸脱が認められるか

分析の視点はほかにも多数ありますが、最終的には、非効率なプロセスやボトルネックがなぜ(Why)発生しているか、という「根本原因分析」へとデータを深堀りしていくことになります。


評価(解釈)- Evaluation or interpretation

プロセスマイニング分析で把握できるのは、プロセスのどこに非効率性やボトルネックがあるかというデータに基づく「事実(ファクト)」のみです。なぜ、非効率やボトルネックがある箇所で発生しているのかという原因は分析結果をいくら眺めてもわかりません。

プロセスマイニングツールでは、データを深堀りする、具体的には、「文脈的データ」とも呼ばれる属性情報(顧客名、サプライヤ名、製品名、材料名、価格など)の切り口で分析することで、どの顧客についてボトルネックが発生しやすいか、という問題の所在を突き止めることはできます。しかし、依然として「原因」がわかるわけではありません。

評価(解釈)の段階では、特定された様々な問題について、現場担当者へのヒアリングや観察調査などを追加的に行い、根本原因を明らかにするとともに、当該問題を解決する緊急性や重要度も併せて検討し、具体的な改善施策の立案へと結び付けていきます。

なお、分析結果の評価(解釈)には、リーンやシックスシグマなどの業務改革・改善手法の知識、ノウハウが必要となります。


運用 – Operation & monitoring

プロセスマイニングの目的は、分析結果の評価(解釈)に基づいて、適切な改善施策を講じ、改善されたプロセスでの業務運用を行うことです。ただ、外部環境の変化に応じて最適なプロセスもどんどん変化していきますし、放置しておくと運用手順が現場の事情で改変されがちです。

そこで、改善前、改善後のビフォア/アフターの効果検証に加えて、改善後のプロセスにおいて今走っている個々の案件をリアルタイムに監視し、問題発生のアラートを関係者に流すことで即時是正を図ることが望ましいでしょう。

プロセス枚にイングツールには、完了している過去のイベントログだけでなく、未完了の、今走っている案件データをリアルタイムで分析しアラートを出す仕組みが備わっているものもあります。

継続的なプロセス改善を目指すのであれば、プロジェクトとして、分析改善したらひとまず取り組み終了ではなく、プロセスマイニング実行体制を確立し、継続的な運用・監視を行うべきです。

標準的なプロセスマイニング分析手順