DX成功の鍵を握る「BPM-COE」とは何か?

dx digital transformation

デジタル化、グローバル化が急速に進む経済・社会において、DX、すなわち「Digital Transformation」に現在、多くの企業が取り組んでいます。DXの取り組みの中には、「紙の資料をデジタル化する」といった初歩的なものも含めるのが一般的ではあります。しかし、そうしたマイナーなデジタル化はあくまで「とっかかり」に過ぎません。

DXの本質、言い換えると究極のゴールは、自社のビジネスモデル、およびビジネスプロセスを全体的に変革することであること。ただし、デジタル経済、グローバル経済が進む現在では、デジタルを活用した変革に必然的になるということを理解しておく必要があります。

では、最終的には全社的な取り組みとなるDXの成功の鍵を握るものは何でしょうか?

もちろん、DX成功の鍵はひとつだけではありません。しかし、他のあらゆるものが揃ったとしても、これなくしては、DXを着実に推進させ成功に導くことはできないと、確信を持って言えるものがあります。それは、DXを推進する常設の専任部署である「COE(Center of Excellence)」です。特に、DXの取り組みの肝となるビジネスモデル、ビジネスプロセスを変革するためには、BPM(Business Process Management)と呼ばれる、包括的な方法論が有効であることから、BPM-COEと呼ぶ専任チームの立ち上げが重要と考えます。

これまで、部署単位でRPAによるタスク自動化を実現し、部分的な改善には成功してきたものの、会社全体での取り組みにまでは広がることがなく、「このままでは本来のDXに辿り着けない」と焦燥感を募らせた企業が、COEを設置する動きが活発になっていくと、私は考えています。

今回は、DX成功の鍵のなかでも最も重要な「BPM-COE」について解説します。


BPM COE (Center of Excellence)とは?

BPMについてはひとまず脇に置いて、COEについて説明しましょう。COEはひとことで言えば、部門横断型の業務を担当する特任組織です。基本的には常設であり、専任のメンバーが所属します。すでにCOEを立ち上げている企業も増えてきていますが、具体的には、「BPR部」や、「DX推進部」といった部署名で運営されていることが多いようです。

一方、BPM(Business Process Management)は、ビジネスプロセスを適切に運営するための方法論です。現状(as-is)のプロセスの改善だけでなく、新しいビジネスモデルに基づく、あるべき(to-be)プロセスの設計と展開、安定的運用と継続的な監視までをカバーする包括的なものです。

したがって、BPM-COEは、DXの推進の核となるビジネスモデル、ビジネスプロセスの改善や再設計、運用、継続的監視を通じた継続的改善のための方法論に基づく、DX推進の役割を果たす部署、ということになります。

なぜ、BPM-COEは部門横断型の組織なのか?

前述したように、DXの最終的なゴールは、会社全体のビジネスモデル、ビジネスプロセスの見直しです。したがって、製造業であれば、調達、生産、物流、販売、マーケティング、サービス、財務など広範囲の部署にまたがって価値を生み出す「バリューチェーン」全体を俯瞰的に捉え、全体最適化の視点でDXに取り組む必要があるからです。

value chain

なぜ、常設の特任組織なのか?

会社再建のための一時的な取り組みであれば、かって日産自動車において、各部署からのメンバーで編成されたバーチャルな組織、「ファンクショナルチーム」のような暫定組織が推進役となることも可能でしょう。しかし、DXで狙う、根本的な全社変革は長期的な取り組みであり、かつ継続的に改善し続けなければなりません。またその実行・運用に当たっては、デジタルの知識を含む高度な専門性が求められることから、データ分析やコンサルティングスキルを持つ専門職も含む常設のBPM-COEが設置されなければならないのです。


BPM-COEの役割と主要タスク

BPM-COEの基本的な役割は、全社最適化の視点で「自社のビジネスシステムやビジネスプロセスをどのように変革すべきか」を企画し、全社に展開するとともに、それによって影響を受ける各部署の業務の見直しを支援することです。すなわち、BPM-COEは、DX推進の司令塔であると同時に、各部署の変革を手助けするコンサルタントの役割を果たす必要があります。

また、どのような変革であれ、ITソリューションの導入や開発がほぼ必ず伴いますので、現場部門と、ITシステム開発を担当するIT部門との間を円滑につなぐ役割を果たさなければなりません。

BPM-COEの主要タスク

BPM-COEが主導すべきタスクには以下のようなものがあります。

 ・現状(as-is)のビジネスプロセスを把握し、見える化するための業務分析を行う 

 ・見える化された現状プロセスにおける改善ポイントを洗い出し、優先順位をつけつつ改善施策を立案する

 ・改善施策を具体的な実行計画に落とし込み、変革が完了するまでの変更管理を行う

 ・変革後の効果を評価するとともに、継続的な運用管理を行い、継続的な改善を主導する


BPM-COE所属メンバーに求められるスキル

 BPM-COEに所属するメンバーにはどのようなスキルが求められるでしょうか。基本的にはなんらかの専門性を有するエキスパートである必要があります。必要となる主なスキルとしては次のようなものが挙げられます。

・ビジネスモデルや、ビジネスプロセスを作成できるスキル・・・ビジネスアナリシス、ビジネスモデリング、ビジネスプロセスモデリング(ビジネスアナリスト、ビジネスコンサルタントなどと呼ばれる役職の担当)

・ビジネスモデル、ビジネスプロセスを定量的、および定性的に分析し、改善すべき課題を抽出できるスキル・・・リーン、シックスシグマ、データ分析、プロセスマイニング、タスクマイニング等含む(ビジネスアナリスト、プロセスアナリスト、データサイエンティストなどと呼ばれる役職が担当)

・あるべき(to-be)ビジネスモデル、ビジネスプロセスを着想、設計できるスキル・・・ワークデザイン、デザインシンキング、アートシンキング等、各種発想法含む(ビジネスアーキテクト、プロセスアーキテクトなどと呼ばれる役職の担当

・ビジネス要求をITの機能要件に落とし込み、またシステム開発のディレクションができる機能(ビジネスアナリスト、システムエンジニアなどと呼ばれる役職の担当)

・プロジェクトマネジメントスキル(COEは継続的な変革の取り組みを主導するものとはいえ、個々の取り組みはプロジェクトとしての立ち上げとマネジメントが必要です)

team member

COEが機能するためには

さて、DXを主導する専任組織であるBPM-COEを立ち上げたのはいいが、うまく回らないケースがあります。うまく回らない原因についてもいろいろと挙げることができますが、逆にきちんと機能するための最低限の必要条件は、トップマネジメントの全面的なバックアップがあることです。

多数の部門が関わる全社レベルのビジネスモデルの見直し、またエンド・ツー・エンドのビジネスプロセスの根本的な組み直し、また大胆なデジタル化に取り組むことになるわけですから、現場からの反発や抵抗が不可避です。このため、トップマネジメントが、全社体制でDXを推進することの意義を語り、ビジョン、ミッションを明確に示しつつCOEを全面的にバックアップすることが求められます。

【速報】Gartner, Market Guide for Process Mining 2021

 米ITアドバイザリ企業Gartnerが、2021年版となる『Market Guide for Process Mining』を2021年11月11日に公開しました。プロセスマイニングのマーケットガイドは2018年から毎年発行されており、今回が4回目の発行となります。

当記事では主なポイントを速報としてお伝えします。

2021年版においてバージョンアップされた、10個のプロセスマイニングができること(10 Capabilities for process mining)は以下の通りです。これらは、各種プロセスマイニングツールがおおむね提供している、あるいは今後提供を目指していると思われる機能とも言えます。


・プロセス、例外処理、案件、そして従業員の関わりについて自動的にモデル(フロー図など)を作成

・カスタマーとのやりとり、カスタマージャーニーを自動的にモデル化すること、および関連分析

・適合性検査、およびギャップ分析

・プロセスモデルの強化(改善)のための追加的分析(属性を付加した分析)

・データ前処理、データクレンジング、ビッグデータへの対応

・意思決定支援を可能にする、KPIの継続的モニタリングのためのリアルタイムダッシュボード

・予測的分析、処方的分析、シナリオ検証、シミュレーション

・プロセスマイニングアプリケーションを作成できるAPIを提供し、また高度な分析と意思決定支援が行える、様々なプロセスにまたがるプロセスマイニング分析のプラットフォーム

・ UI(User Interaction)ログに含まれる低レベルのイベントデータから有用な情報を導き出すタスクマイニング。UIログは、キーストローク、マウスクリック、データ入力などに基づいて、ユーザーが行ったタスク内の単一ステップを記録したもの

・様々な「洞察」を「行動」に移す実行機能 。これらの機能は、分析対象のアプリケーションの単純な更新から、タスクの実行をサポートするスクリプトの作成まで多岐にわたる


また、Gartnerは、プロセスマイニングが採用されるメインドライバーとして以下の5つを挙げています。

・デジタルトランスフォーメーション – Digital Transformation

・人工知能(AI) – Artificial Intelligence

・タスクオートメーション – Task Automation

・ハイパーオートメーション – Hyperautomation

・オペレーショナルレジリエンス – Operational Resilience

ハイパーオートメーションとは、ひらたく言えば、RPAなどを用いたタスクオートメーション、ワークフローやiBPMSによるプロセスオートメーション、そしてDigitalOpsによる業務オペレーション全体の自動化をチャットボット、スマーとスピーカー、AI、機械学習などの様々なテクノロジーも組み込みながら実現していこうとするものです。

オペレーショナルレジリエンスは、ビジネス環境の変化に適用するために、業務に関わる人、プロセス、情報システムを柔軟に変化させる技術です。業務のレジリエンス、すなわち弾性(回復力)が優れた企業は、競争力を維持しつつ、プロセスを局所的に、迅速に変更するために業務をスピードアップしたりスローダウンすることのできる組織能力を備えています。


標準的なプロセスマイニングのユースケースとしては以下の5つが挙げられています。なお、アルゴリズムとは、イベントログからプロセスモデルを自動的に描くために、プロセスマイニングツールに組み込まれているものです。

・アルゴリズムによるプロセス発見、分析によるプロセスの改善

・アルゴリズムによるプロセスの比較、分析、検証による監査、コンプライアンスの改善

・自動化の機会の発見と検証によるプロセス自動化の改善

・戦略と業務を結びつけ、柔軟な組織を生み出すことによる、デジタルトランスフォーメーション(DX)の支援

・アルゴリズムによるITプロセスの発見と分析に基づく、IT業務のリソース最適化の改善


2021年版で示されているプロセスマイニングの代表的ベンダー・ツールは以下の20種類です。

 ABBYYTimeline
 Appian (Lana Labs)LANA Process Mining, LANA Connect
 ApromoreApromore Enterprise Edition
 BusinessOptixBusinessOptix
 CelonisCelonis Execution Management System
 DatricksDatricks
 EverFlowEverFlow
 FluxiconDisco
 IBMIBM Process Mining
 IntegrisExplora Process
 LivejourneyLivejourney
 MinitMinit
 Process Analytics Factory (PAF)PAFnow
 Puzzle DataProDiscovery
 QPR SoftwareQPR ProcessAnalyzer
 SAP (Signavio)SAP Signavio Process Intelligence
 Software AGARIS Process Mining
 SorocoScout Platform
 StereoLOGICStereoLOGIC Process Mining, StereoLOGIC Task Mining
 UiPathUiPath Process Mining, UiPath Task Mining

プロセスマイニング最新機能群と課題、今後の進化の方向性

direct follows graphs

Latest Process Mining Functionality, Challenges, and Future Evolutionary Trends

English follows Japanese.

今回の記事では、2021年夏時点における、プロセスマイニングのテクノロジーやソリューションに焦点を当て、機能、課題、今後の進化についてお伝えします。

1 プロセスマイニングの最新機能群

プロセスマイニングは、テクノロジーやツールの側面に関心が行きがちであるが、その本質は、データ分析の理論体系・方法論(Discipline)である。実際、プロセス“マイニング”という言葉でわかるように、データマイニングの一類型と考えることができる。ただし、あらゆる事象を分析対象とする幅広い概念のデータマイニングと異なり、文字通り「プロセス」を分析対象とするのがプロセスマイニングである。その基本となる用途は「プロセスの可視化」であり、プロセスが可視化されたことによって、対象プロセスがはらむ問題点の発見が容易になる。結果として、プロセス改善の取り組みに大きな役割を果たすことができる。

1.1  現在の主要機能

さて、プロセスマイニングは、前述したように「プロセスの可視化」の方法論の確立とツール開発からその研究がスタートしている。それは、業務遂行に使用するITシステムから抽出されたデータに基づき、業務手順を示すフローチャートを自動的に作成する機能であり、「プロセス発見(Process Discovery)」と呼ばれる。その後、研究の進展、ツールの高度化に伴い、様々な機能が実装されてきた。以下は、現在のプロセスマイニングツールの多くが実装している主な分析機能である。

・プロセス発見:


業務手順を自動的にフローチャート化し、作業頻度や所要時間などを算出する

・適合性検査:


データに基づき発見された現状プロセス(as-is)と標準プロセス(to-be)との比較分析を行い、現状プロセスの逸脱を抽出する

・ダッシュボード:


対象プロセスについて、様々な切り口から集計・分析した結果を各種グラフや図でビジュアルに表示する(BIツールと同等)

1.2 最新機能群

さらに、近年では、最先端のプロセスマイニングツールでは、次のような最新機能群が搭載され始めている。

・ビジネスルールマイニング:


 対象プロセスにおいて、フローの分岐(意思決定ノード)が発生している箇所がある場合、その分岐を決定している基準=ビジネスルールをデータに基づいて自動発見する

・シミュレーション(What-If分析)


 プロセス発見機能によって可視化された現状プロセスについて、一部のタスクを排除したり、あるいは自動化したりすることで、どの程度の改善効果が期待できるかをシミュレートする

・運用サポート


 現在仕掛中の案件について、業務遂行に関わるデータをリアルタイムに吸い上げ、業務の逸脱を探知したり、将来の問題発生を予測したりして、担当者にアラートを出す、また最善手を提案する、あるいは自動的に改善施策を実行する。

上記3つの最新機能のうち、ビジネスルールマイニング、およびシミュレーションは、既に完了した案件、すなわち過去データを分析対象としているが、運用サポートは、未完了の案件に関わるデータを逐次処理し、円滑な業務遂行を支援することが主眼である。この意味で、運用サポートは、分析の方法論の枠を超えたITソリューションの一形態とも言えるだろう。このため、プロセスマイニング業界最大手のセロニス社では、当該機能を「EMS(Execution Management System)」と呼んでいる。


2 プロセスマイニングが克服すべき課題

2.1 データ前処理の難しさ

データマイニングでは、全体の所要時間の約8割がデータの収集・抽出、クリーニングといったデータ前処理に費やされると言われる。プロセスマイニングでも同様である。多様なITシステムから抽出された数十~数百に及ぶデータファイルを適切に統合し、抜け漏れ、文字化けなどのダーティなデータを補正し、ツールに投入して分析可能な「データセット」を作り上げる労力は大きい。プロセスマイニングにおけるデータ前処理の難度を高くしている要因としては、データの抽出元が各種業務システムであることから、業務システムへの理解が必要であること、また、業務プロセス改善に資する分析結果を導くためのデータセットを作成するためには、業務自体への理解、また業務改善手法にもある程度通暁している必要があることが挙げられる。

2.2 ツールの分析品質

分析品質については2つの課題を述べたい。一つはDFGs(Directly Follows Graphs)の限界、もうひとつは、Convergence/Divergence問題である。

2.2.1 DFGsの限界

プロセスマイニングの基本機能である「プロセス発見」は、当初、ペトリネットがベースになっていたが、より現実に近いフローチャートを再現するために、様々なアルゴリズムが開発されてきている。ただ、業界有識者の話によれば、現在実用化されているプロセスマイニングツールのほとんどは、ファジーマイナーと呼ばれるアルゴリズムに基づいたもの(各社独自の改善は行っていると思われる)であると言われている。
同アルゴリズムは、一般にDFGs(Directly-follows Graphs)と呼ばれる。ペトリネットや、また業務手順をフローチャートとして記述するための世界標準であるBPMN(Business Process Modeling and Notation)と異なり、ノードとノードが直接(Directly)結びつけられたフローチャートがDFGsである。すなわち、分岐ノードが描かれないため、このアルゴリズムでは、どこでどのような分岐が発生しているのか、具体的には、排他的(OR)なのか、並行的(AND)なのか、といったことが把握できない。このため、現状のプロセスを自動的に再現するとはいっても、分岐が明確でない不完全なものになるというのが現実である。もちろん、これについては、BPMN形式のフローチャートへの自動変換や、前述したビジネスルールマイニングの採用などの機能改善が行われてきている。

図1 Petri net、BPMN、Fuzzy Minerのフロー図例
上図でわかるように、DFGsであるFuzzy Minerには、Petri netやBPMNのような分岐ノードが存在しないため、同じプロセスの表現でありながら、Fuzzy Minerでは分岐のルールを判別することができない。

2.2.2 Convergence/Divergence問題

プロセスマイニングでは、対象プロセスで処理される案件に対して行われる各アクティビティを束ねて、フローチャートを描くために、「案件ID」、「アクティビティ(処理内容)」、およびタイムスタンプの3項目が必須である。例えば、請求書処理プロセスであれば、各請求書に付番されている個別の請求書番号、そして、その請求書に対して行われる「受領」、「確認」、「承認」、「支払い」などのアクティビティをタイムスタンプとともにITシステムから抽出することになる。


 実際のプロセスにおいてしばしば直面するのは、案件IDがひとつではないという点である。具体例を示そう。図2は、エンジニアリング会社の受注から資材調達までのプロセスの一般的なイメージである。受注した機械は、発注企業の仕様に基づいて製造されなければならないため、受注後は、まず設計を行い、次に設計図(Blueprint)に基づいて必要な資材・パーツを洗い出し、サプライヤに発注する流れとなる。ここで、受注した案件は、工事番号(Construction Number)で管理されるが、一つの機械に対して複数の設計図が作成されるため、設計段階では、設計図番号(Blueprint Number)が用いられる。さらに、資材・パーツの洗い出しにはパーツ番号(Parts Number)が、調達時には、複数のパーツがいくつかにまとめられて調達要求が出される。この時は、調達要求番号(Procurement Request Number)が付番される。さらに、複数の調達要求は、サプライヤ毎に集約されて発注が行われる。ここでは発注番号(Order Number)が管理用のIDとなる。

図2 受注から資材調達までのプロセス例(エンジニアリング会社)
1台の機械受注に対して複数のBluleprint、Parts、Procurement Request、Orderが紐づけられ、ひとつの案件IDだけでは適切な分析が行えない

 このように、ひとつの案件が処理されていく中で、集約されたり(Convergence)、拡散したり(Divergence)するプロセスが実務ではごく普通に見られる。従来のアプローチでは、プロセス開始時の工事番号を案件IDとして資材調達までを一気通貫に分析することになるが、途中に集約や拡散が存在していると、実態とはかけ離れたプロセスが再現されてしまう。(例えば、拡散している箇所は単なる繰り返しタスクとして認識されるなど)


 このConvergence/Divergence問題は、プロセスマイニングの分析品質を左右する最大の課題と言える。そこで、近年では、プロセスマイニングのゴッドファーザー、Wil van der Aalst教授が率いる研究者たちが「Object-Centric Process Mining」(1)と称する独自の方法論により当課題の解決に取り組んでいる。 また、myInvenioには、マルチレベルマイニングという機能が実装されており、一つのプロセスについて複数の案件IDを設定することで、プロセスの集約・拡散の状況を加味したフローの再現を実現している。


 今後の進化の方向性

 プロセスマイニングは、データ分析の枠を超えて、業務支援ソリューションとしての役割も果たしつつあることは前述した。ここでは、プロセスマイニングは今後、どのように進化していくのか、俯瞰的な視点で述べてみたい。

3.1 プロセスマイニング1.0

プロセスマイニングは。現状のプロセスをデータから自動再現する「プロセス発見」が基本機能であった。これは、現状をありのままに描きだすという点において「記述的分析(Descriptive Analysis)」である。
ただし、本来やりたいことは、プロセスに潜む非効率性やボトルネックなどの問題個所の抽出である。つまり、どこが悪いのか、を探し出さなければならない。そこで、この部分の処理時間が長すぎる、あるいは繰り返しが多いなど、容易に問題と思われる個所を教えてくれる機能が付加されている。診断的分析(Diagnostic Analysis)に属する機能である。プロセスマイニングツールでは、一般に「根本原因分析(Root Cause Analysis)」と命名されている。
以上は、過去データを対象とする分析機能であり、プロセスマイニング1.0と呼ぶべきものであろう。

図3 プロセスマイニングの進化
プロセスマイニングの機能は、プロセスマイニング1.0から2.0へと大きく進化しつつある

3.2 プロセスマイニング2.0

 プロセスマイニングの分析対象として、未完了、すなわち現在進行中の案件データをリアルタイムに取り込むようになると、逸脱の発見に加えて、現在走っている案件はあとどのくらいで完了しそうなのか、といった所要時間の予測や、将来に発生するかもしれない逸脱の予測も可能になる。こうした予測的分析(Predictive Analysis)が実装されたツールも増えつつある。
 さらには、予測結果に基づいて、所要時間を短縮するために、あるいは将来の逸脱発生を未然に防ぐために、今どのような対応を行うべきかを提案する機能を持つツールも登場しつつある。これは「処方的分析(Prescriptive Analysis)」の機能である。


 こうした未完了データを扱うプロセスマイニング分析は、既存のプロセスマイニング1.0を大きくバージョンアップするものであり、プロセスマイニング2.0と呼ぶことができるであろう。
予測的分析、処方的分析は未成熟であり、その信頼性は必ずしも高いとは言えないが、今後のさらなる技術進展を通じて、ERPなどのエンタープライズシステムに基づく円滑な業務遂行を支援する価値あるソリューションとして多くの企業への導入が進むことは間違いないと思われる。


Latest Process Mining Functionality, Challenges, and Future Evolutionary Trends

1 Latest Functions of Process Mining

Process mining tends to attract attention in terms of technology and tools, but its essence is a theoretical system and methodology (discipline) of data analysis. In fact, as the term “process” mining suggests, it can be considered as a type of data mining. However, unlike data mining, which is a broad concept that targets all kinds of events for analysis, process mining literally targets “processes” for analysis. The basic use of process mining is “process visualization,” and the visualization of processes facilitates the discovery of problems associated with the target processes. As a result, it can play a significant role in process improvement efforts.

1.1 Current Major Functions

As mentioned above, the research of process mining has started from the establishment of the methodology of “process visualization” and the development of tools. It is a function to automatically create a flowchart showing business procedures based on data extracted from IT systems used for business execution, and is called “Process Discovery. Since then, various functions have been implemented as research has progressed and tools have become more sophisticated. The following are the main analysis functions implemented in most of the current process mining tools.

Process Discovery

automatically create a flowchart of business procedures and calculate the frequency of work and time required.

Conformance Checking

compares and analyzes the current process (as-is) discovered based on data with the standard process (to-be), and extracts deviations from the current process.

Dashboards

A function to display the results of aggregation and analysis of target processes from various perspectives in various graphs and tables.

1.2 Latest Functions

In addition, in recent years, the most advanced process mining tools have begun to include the following latest functions.

Business Rule Mining

When there is a flow branching (decision node) in a target process, it automatically discovers the criteria (business rules) that determine the routing based on the data.

Simulation (What-If Analysis)

Simulate how much improvement can be expected by eliminating or automating some of the tasks in the current process visualized by the process discovery function.

Operational Support

For projects that are currently in progress, the system absorbs data related to business execution in real time, detects deviations in business operations, predicts future problems, and alerts the person in charge, suggests the best course of action, or automatically implements improvement measures.

Of the three latest functions mentioned above, business rule mining and simulation analyze past data, i.e., data that has already been completed, while operational support focuses on supporting smooth business execution by sequentially processing data related to unfinished projects. In this sense, it can be said that operational support is a form of IT solution that goes beyond the framework of analysis methodology. For this reason, Ceronis, the largest company in the process mining industry, calls this function “EMS (Execution Management System).

2 Issues to be overcome to make process mining better to be used

As seen in the acquisition of Signavio, a major tool vendor, by SAP and myInvenio by IBM, process mining is increasingly recognized as an important tool that is part of IT solutions. However, there are issues that need to be overcome in order for it to be used properly in business practices and to bring results. In this section, I would like to present the main issues from two perspectives.

2.1 Difficulties in data preprocessing

In data mining, it is said that about 80% of the total time required is spent on data preprocessing such as data collection, extraction, and cleaning. The same is true for process mining. It takes a lot of effort to properly integrate dozens to hundreds of data files extracted from various IT systems, to correct dirty data such as omissions and garbled characters, and to create a “data set” that can be fed into tools for analysis. Factors that make data pre-processing in process mining difficult include the fact that the source of data extraction is various business systems, and thus an understanding of the business systems is necessary. In addition, in order to create a data set to derive analysis results that contribute to business process improvement, it is necessary to understand the business itself and to have some familiarity with business improvement methods.

2.2 Analysis quality of tools

There are two issues that need to be addressed regarding the quality of analysis. One is the limitation of DFGs (Directly Follows Graphs), and the other is the Convergence/Divergence problem.

2.2.1 Limitations of DFGs

The basic function of process mining, “process discovery,” was initially based on Petri nets, but various algorithms have been developed to reproduce flowcharts closer to reality. However, according to industry experts, most of the process mining tools currently in practical use are said to be based on an algorithm called fuzzy miner (each company is believed to have made its own improvements).  

This algorithm is commonly called DFGs (Directly-follows Graphs). Unlike Petri nets and BPMN (Business Process Modeling and Notation), which is the world standard for describing business procedures as flowcharts, DFGs are flowcharts in which nodes are directly connected to each other (directly). In other words, since branching nodes are not drawn, the algorithm cannot grasp where and how the branching is occurring, specifically, whether it is exclusive (OR) or concurrent (AND). For this reason, even if the current process is automatically reproduced, the reality is that the branching is not clear and incomplete. Of course, functional improvements have been made in this regard, such as automatic conversion to BPMN format flowcharts and the adoption of business rule mining as mentioned above.

この画像のalt属性が入力されていません

2.2.2 Convergence/Divergence Problem

In process mining, three items, “case ID,” “activity (event),” and timestamp, are essential to draw a flowchart by bundling each activity performed for a case processed in the target process. For example, in the case of an invoice processing process, the individual invoice number attached to each invoice and the activities such as “receipt,” “confirmation,” “approval,” and “payment” for that invoice are extracted from the IT system along with the time stamp.

What we often face in the actual process is that there is no single case ID. Let’s take a concrete example. The figure below shows a general image of the process of an engineering company from order receipt to material procurement.

この画像のalt属性が入力されていません

Since the ordered machine must be manufactured based on the specifications of the ordering company, after receiving the order, the company first designs the machine, then identifies the necessary materials and parts based on the blueprint, and then places an order with the supplier. Since multiple blueprints are created for a single machine, the Blueprint Number is used in the design stage. In addition, the Parts Number is used to identify materials and parts, and at the time of procurement, multiple parts are combined into several parts and a procurement request is issued. In this case, a Procurement Request Number is assigned. In addition, the multiple procurement requests are aggregated to each supplier and an order is placed. In this case, the Order Number becomes the ID for management.

In this way, the processes of convergence and divergence are commonly seen in practice as a single case is processed. In the conventional approach, the construction number at the beginning of the process is used as the case ID, and the entire process is analyzed up to the procurement of materials, but if there is convergence or divergence in the process, a process that is far from the actual situation is reproduced. (For example, the diffused part is recognized as a mere repetitive task.)

This Convergence/Divergence problem is the biggest issue that affects the analysis quality of process mining. In recent years, researchers led by Professor Wil van der Aalst, the Godfather of Process Mining, have been working on solving this problem using a unique methodology called “Object-Centric Process Mining” .

3 Future Direction of Evolution

We have already mentioned that process mining is playing a role as a business support solution beyond the framework of data analysis. In this section, we will discuss how process mining will evolve in the future from a bird’s eye view.

3.1 Process Mining 1.0

Process mining is. The basic function of process mining was “process discovery,” which automatically reproduces the current process from data. This is a “Descriptive Analysis” in that it depicts the current state as it is.

However, what we originally wanted to do was to extract problem areas such as inefficiencies and bottlenecks hidden in the process. In other words, we need to find out what is wrong with the process. Therefore, there is an additional function that can easily tell us where the problem is, such as the processing time of this part is too long or there are too many repetitions. This is a function that belongs to Diagnostic Analysis. In process mining tools, it is generally named “Root Cause Analysis.

The above is an analysis function for historical data, and should be called Process Mining 1.0.

この画像のalt属性が入力されていません

3.2 Process Mining 2.0

When process mining starts to take in uncompleted, i.e., ongoing, case data in real time as a target of analysis, it becomes possible not only to detect deviations but also to predict how long it will take to complete the currently running case, and to predict deviations that may occur in the future. In addition, it is possible to predict how long it will take to complete a case that is currently running, and to predict future deviations. The number of tools that implement such predictive analysis is increasing.

Furthermore, based on the prediction results, tools that can suggest what actions should be taken now to shorten the time required or to prevent future deviations from occurring are also emerging. This is the function of “Prescriptive Analysis”.

Such process mining analysis that deals with incomplete data is a major upgrade of the existing process mining 1.0, and can be called process mining 2.0.

Although predictive and prescriptive analyses are still in their infancy and their reliability is not necessarily high, it is certain that they will be introduced to many companies as valuable solutions to support smooth business execution based on enterprise systems such as ERP through further technological progress in the future.

プロセスマイニングベンダー最新評価レポート2021 – Everest Group PEAK Matrix(R) 2021

evelest

Process Mining Products PEAK Matrix(R) Asessment 2021

ダラスに本社を置くコンサルティング&調査会社のEverest Groupは、2021年6月4日、主要なプロセスマイニングベンダー18社について、以下の2つの軸での市場ポジショニング(山脈に見立てているので「PEAK Matrix」)を発表しました。

プロセスマイニングについてのEverest Peak Matrixは、2020年版につづいて2年目です。

⇒2020年版はこちらから

横軸:Vision & Ability – Measures ability to deliver products successfully
製品開発ビジョンを示し、それに沿った製品を成功裡に提供できる能力

縦軸:Market Impact – Measures impact created in the market
市場に与えるインパクトの強さ

PEAK Matrixでは、競合製品をLeaders(リーダー)、Major Contenders(主要な競争相手)、Aspirant(上を狙う野望を持つ製品)の3つにカテゴライズします。Process Mining市場では、それぞれのカテゴリーに含まれる製品は次の通りです。

Leaders

  • Celonis
  • Software AG
  • Minit
  • UiPath

Major Contenders(アルファベット順)

  • Apromore
  • Everflow
  • LANA Labs
  • Logpickr
  • MEHRWERK GmbH
  • Monkey Mining
  • myInvenio
  • PAF now
  • QPR Software
  • UpFlux
  • Signavio

Aspirants

  • Integris
  • LiveJourney
  • Live Objects

→Matrix図はこちら

2020年版からの主な変化としては、リーダーグループでは、MinitがMajor Contendersから昇格したことが挙げられます。結果、Leadersに位置付けられたベンダーは4社となりました。

Major Contenders、すなわちリーダーグループに闘いを挑んでいる主要な競争ベンダーについては、前回は8社でしたが、今回は11社と増え、さらに競争が激化しています。まだあまり知名度の高くないMonky Miningや、Upfluxが登場。

また、このところ急速に機能を拡張してきたApromoreが前回よりも高い位置まで登っています。

Aspirantsとしても、新興ベンダーと思われますが、Livejourney、Integris、Live Objectsの3社が登場しました。

なお、日本で本格展開しているプロセスマイニングツールは、Celonis、Uipath、myInvenio、Signavio、ABBYY Timelineの5社です。(ABBYY Timelineが、今回のPeak Matrixから除外された理由は今のところ不明)

レポート詳細は以下から入手可能です。(有料)

Process Mining – Technology Vendor Landscape with Products PEAK Matrix(R) Assessment 2021


プロセスマイニングツール選定のための参照マトリックス

ReferenceMatrix_for_PMtool_Selection_ja

Reference Matrix for Process Mining Tool Selection

English follows Japanese. Before proofread.

プロセスマイニングは近年、DX推進・定着に役立つソリューションとしての認知・理解がさらに進みました。また、先のIBMによるmyInvenioの買収や、SAPによるSignavioの買収が示すように、プロセスマイニングが、大手IT企業のソリューションに組み込まれることで、企業のITシステム開発・運営に欠かせない構成要素として重要性が高まっていくことは間違いありません。

さて、企業が、プロセスマイニングを活用したビジネスプロセス改善やシステム改修・開発に取り組むに当たって、言うまでもなく、プロセスマイニングツールの採用が必須であり、自社にとって最適なツールの選定は成功の大きなカギを握っています。

今回は、自社では、プロセスマイニングツールのどのような機能が特に必要となるのかを判断する助けとなるマトリックスを解説いたします。


マトリックスの横軸:時間

分岐対象は、時間と言う視点では、過去の完了したプロセスなのか、それとも現時点で処理中のプロセスなのか、それともこれから遂行されるであろう未来のプロセスなのか、ということです。

一般に、データ分析は完了した過去データを対象に行います。プロセスマイニング分析においても同様で、完了したイベントログデータをプロセスマイニングツールで分析することで、現状プロセスを自動的にモデル化し、様々な視点での分析(基本分析)を行います。

例えば以下のような基本分析があります。

・頻度分析

・パフォーマンス分析(所要時間やコストの視点での分析)

・バリアント分析

・適合性検査(現状プロセスと理想プロセスの比較分析) 

など。

プロセスマイニングツールの進化系では、現在進行中のイベントログデータをリアルタイムに近い頻度でプロセスマイニングツールに取り込んで、リアルタイム監視を行い、逸脱などの問題を探知すれば、関係者にアラートを出すという機能を備えています。

これから行われるであろう未来のプロセスについては、以下のような機能が対応します。

・シミュレーション(What-IF)

現状のプロセスをなんらか改善した場合に、どれだけの改善効果(スループット短縮やコスト削減など)が得られるのか、シミュレーションを実行する。

・モデリング

実装すべき理想プロセスの流れをBPMN形式でモデル化する。

・予 測

仕掛中案件が、今後どのような手順で処理されていくことになるのか、所要時間がどの程度になるのか、といった予測をAIなどを活用して行う。

・レコメンデーション

上記予測結果を踏まえて、問題発生や処理時間の長期化を未然に防ぐための最善の打ち手を提案する。

・自動的なプロセス改善(AutoPI:Automated Process Improvement)

プロセス改善のための打ち手を一定の条件において、プロセスマイニングツールが自動的に実行し、迅速な対応を実現する。


マトリックスの縦軸:ビジネス層 

ビジネス層とは、プロセスの視点でより詳細な構成要素に因数分解していくものです。管理的には、上位にあるほど「戦略的」であり、下層にむかって「戦術的」、そして「業務的(日々の現場管理)」な視点が必要となります。

最上部は、ビジネスモデルです。そこから、企業全体のプロセスをEnd-to-Endで把握するバリューチェーン、バリューチェーンを構成する個々のプロセスと粒度が細かくなっていきます。

どのようなビジネスプロセスであれ、それはいくつかのサブプロセスに分解できます。さらにひとつのサブプロセスは、より細かいタスクで構成され、そのタスクは複数のアクティビティで構成されています。

たとえば、経理部門での「請求書処理」というサブプロセスを考えると、これは「請求書を受領する」、「請求書の内容を確認する」、「請求書を経理システムに登録する」、登録した請求書に対する支払処理を行う」といったアクティビティが含まれます。

これらのアクティビティのうち、「請求書を受領する」の場合、「PDF請求書添付のメールを開封する」、「添付されたPDF請求書をダウンロードする」といった一つひとつのタスクステップが実行されていくことになります。

さらにこうしたタスクステップは、PCの操作単位では、メールソフトアイコンをクリック、メール開封をクリック、添付ファイルをクリックといった最小単位のアクティビティが実行されており、これらはこれ以上分解できないアクティビティであることから「原子アクティビティ」と呼ばれます。

プロセスマイニングが分析対象とするのは、基本的には、プロセス層からアクティビティ層(場合によってはタスクステップ層)です。ITシステム内に記録されているトランザクションデータは多くの場合、比較的粒度の粗いアクティビティレベルであるという分析対象データそのものの制約があります。

そこで、より粒度の細かいタスクステップ、原子アクティビティまでの分析を行うために活用されるのがタスクマイニングです。タスクマイニングはまだ誕生したばかりの分析手法であり、BI的な集計以上の深い分析方法についてはまだ試行錯誤の段階ではありますが、プロセスマイニングと併せて活用することで、特にRPAによるプロセス自動化に貢献します。


さて、貴社のビジネスプロセス課題と照らして、分析対象とすべきなのは、過去、現在、未来のどれでしょうか?また、ビジネス層としては、どの粒度のプロセスでしょうか?

ツールベンダーのご担当の方とは、一緒にこのマトリックスを見ながら、自社はどこに問題意識を持っているのかを認識しつつ、これらの機能をどの程度実装できているかを把握していきましょう。

なお、マトリックスには記載しておりますが、プロセスマイニングの対象とはならない、ビジネスモデル層については、ビジネスモデルキャンバス(BMG:Business Model Canvas)、プロセスモデルキャンバス(PMG:Process Model Canvas)といったツールが活用できます。


Reference Matrix for Process Mining Tool Selection

In recent years, process mining has been further recognized and understood as a useful solution for promoting and establishing DX. In addition, as shown by the recent acquisition of myInvenio by IBM and Signavio by SAP, there is no doubt that process mining will become increasingly important as an indispensable component of corporate IT system development and operation as it is incorporated into the solutions of major IT companies.

Needless to say, the adoption of process mining tools is essential for companies to improve their business processes and to renovate and develop their systems using process mining, and the selection of the best suited tool for your company is a major key to success.

In this article, I will explain a matrix that will help you determine what functions of process mining tools are particularly necessary for your company.

Horizontal axis of the matrix: Time

From the perspective of time, there are three dimensions which are completed processes in the past, processes in progress at the moment, and future processes to be executed in the future.

In general, data analysis is done on completed historical data. The same is true for process mining analysis. By analyzing completed event log data with process mining tools, we can automatically model current processes and analyze them from various perspectives (basic analysis).

For example, the following basic analysis is available.

  • Frequency analysis
  • Performance analysis (analysis from the perspective of time required and cost)
  • Variant analysis
  • Conformance checking (comparative analysis of current process and ideal process) 

etc.

There are some process mining tools which can do continuous monitoring and if problems such as deviations are detected, alerts are sent to the relevant parties by importing ongoing event log data to the process mining tool at a frequency close to real time.

For future processes that will take place in the future, the following functions will be supported.

Simulation (What-IF Analysis)

Simulate how much improvement (throughput reduction and cost reduction, etc.) can be obtained if the current process is improved in some way.

Modeling

Model the flow of the ideal process to be implemented in BPMN format.

Forecasting

predict how in-process projects will be processed in the future and how much time will be required by using AI.

Recommendations

Based on the results of the above predictions, the tool proposes the best measures to prevent problems from occurring and prolonging the processing time.

Automated Process Improvement (AutoPI)

A process mining tool automatically executes measures for process improvement under certain conditions to achieve a quick remedy.

●Vertical axis of the matrix: Business layer 

The business layer is a factorization into more detailed components from a process perspective. Administratively, the higher the layer, the more “strategic” it is, and the lower the layer, the more “tactical” it is, and the more “operational” (day-to-day on-site management) it needs to be.

At the top is the business model. From there, the granularity becomes finer, including the value chain that grasps the processes of the entire company from end-to-end, and the individual processes that make up the value chain.

Any business process can be broken down into a number of sub-processes. One more sub-process is composed of finer-grained tasks, and those tasks are composed of multiple activities.

For example, if we consider a sub-process called “invoice processing” in the accounting department, this includes activities such as “receiving invoices,” “checking the contents of invoices,” “registering invoices in the accounting system,” and “processing payments for registered invoices.

Among these activities, in the case of “receive invoice,” each task step is executed one by one, such as “open the email with the PDF invoice attached” and “download the attached PDF invoice.

In addition, these task steps are executed in the smallest units of PC operations, such as clicking on the mail software icon, clicking on open mail, and clicking on the attachment. These are called “atomic activities” because they cannot be decomposed any further.

Process mining basically analyzes the activity layer (or task step layer, as the case may be) from the process layer. transactional data recorded in IT systems are often at the activity level, which is relatively coarse-grained. In many cases, transaction data recorded in IT systems is at a relatively coarse activity level.

Therefore, task mining is used to analyze task steps and atomic activities with finer granularity. Task mining is still in its infancy, and it is still at the stage of trial and error for deeper analysis besides BI-like aggregation. However, by using it together with process mining, it can contribute to process automation, especially with RPA.

Now, in light of your company’s business process issues, which should be the target of analysis: past, present, or future? Also, at what granularity should the process be analyzed as a business layer?

With the person in charge of the tool vendor, let’s look at this matrix together to understand the extent to which these functions can be implemented while recognizing where the company is aware of the issues.

For the business model layer, which is not subject to process mining, tools such as Business Model Canvas (BMG) and Process Model Canvas (PMG) can be used.

ReferenceMatrix_for_PMtool_Selection_en

【速報】SPARK Matrix(TM): Digital Twin of an Organization (DTO) Solution, 2021 – Quadrant Knowledge Solutions

SPARK Matrix(TM): Digital Twin of an Organization (DTO) Solution, 2021

米国の経営コンサルティング会社、Quadrant Knowledge Solution社の市場調査レポート、「SPARK Matrix(TM): Digital Twin of an Organization (DTO) Solution, 2021」が2021年3月3日に公開されました。

Digital Twin of an Organization (DTO) とは?

Digital Twin of an Organization (DTO)は、一般に、「DTO」、または短く「デジタルツイン」と称されます。DTOは、現実のアナログな企業の形態にそっくりな、デジタルの双子の片割れ、言い換えると「レプリカ(複製)」のことです。

DTOは、より具体的には企業の業務プロセスや、組織体制、システム構成などをデジタルデータに基づいてモデル化し、ディスプレイ上で可視化したものです。企業は、DTOを通じて現状を把握し、問題点を発見し、シミュレーションを行うなどして、最適な改善施策を練り、実行に移すことが可能になります。またDTOによるモニタリング(監視)によって、継続的な改善を行うことができます。

SPARK Matrix(TM):Digital Twin of an Organization (DTO) Solution

今回発表されたSPARK Matrixでは、DTOを実現する各種商用ソリューションを比較分析しています。検討対象となったソリューションは合計16種です。SPARK Matrixでは、これらを以下の3つのカテゴリーに分類しています。

・Technology Leader

・Challengers

・Aspirants

そして、Technology Leaderに含まれるソリューション(ベンダー)は、以下の8種となっています。

・Software AG

・Signavio

・Celonis

・myInvenio

・CANEA

・Cosmo Tech

・QualiWare

・QPR Software

なお、上記ベンダーのうち、Software AG、Signavio、Celonis、myInvenio、QPR Softwareは、プロセスマイニングソリューションの代表的なベンダーでもあります。

プロセスマイニングは、DTOを実現する上で不可欠の機能(次項参照)を提供していることから、DTO市場においても高い存在感を示すのは当然でしょう。

DTOを実現する主要機能

当レポートでは、DTOを実現する主要機能として以下を示しています。

・包括的なデータマネジメント – Comprehensive Data Management

・プロセスのモデリングとビジュアル化 – Process Modeling and Visualization

・シミュレーション – Simulation

・高度な分析 – Advanced Analytics

・リアルタイムモニタリング – Real-Time Monitoring

・継続的なフィードバックと改善 – Continuous Feedback and Improvement

・各種システムとの統合と協調 – Integration and Collaboration

オリジナルレポートはこちらから

プロセスマイニングツールとBIツールは融合するか?

difference between pm tool and bi tool

Will Process Mining tool and BI tool be amalgamated?
English follows Japanese. Before proofread.

プロセスマイニングツールとBIツールは融合するか?

その答えはイエスです。すでに融合が始まっています。

具体的な動きとしては、Power BIのアドオンとして「PAFnow」というプロセスマイニングツールが提供されています。同様に、Qlikのアドオンとしては「MEHRWERK ProcessMining」が提供されています。

一方、プロセスマイニングツールも、イベントログからプロセスモデルを自動的に作成する「プロセス発見」をはじめとするプロセスマイニングの標準機能に加えて、「ダッシュボード機能」を充実させてきていますが、このダッシュボード機能はBIツールが提供する機能水準に近付きつつあります。


さて、プロセスマイニングツール、BIツールのどちらも、企業・組織運営に関わる様々なデータを取り込んで、様々な切り口で数値を演算し、その結果を表やグラフなどでビジュアルに提示するという点は同じです。

プロセスマイニングツールとBIツールの決定的な違いは、演算結果をどのように解釈し、活用できるか、という点にあります。

具体的には、以下のように説明できます。


●プロセスマイニングツールが提示する演算結果

価値を生み出すアクティビティ(プロセス)のパフォーマンス=原因指標である。すなわち、プロセスマイニングツールがカバーするのは主に、KPI(Key Performance Indicator)である。

たとえば、保険会社の保険金請求処理プロセス(保険加入者からの保険金請求~保険金支払い)であれば、プロセスマイニングツールで分析することによって、プロセスに含まれるアクティビティごとの処理案件数や、処理に要した総所要時間(スループット)、処理コスト、担当者数などを算出できる。

また、プロセスマイニングならではのプロセス発見機能によって、業務手順を自動的にフローチャートとして描き出し、プロセスのどの部分にボトルネックや非効率な繰り返し作業が発生しているかを特定できる。

このように、価値を生み出すアクティビティ、すなわち原因系データを分析することで、さらに価値を高めたり、あるいはコストを削減するための業務プロセス改善施策へとつなげることができる。

BIツールが提示する演算結果

生み出された価値(売上や利益など)の大きさ=結果指標である。すなわち、BIツールがカバーするのは、KGI(Key Goal Indicator)である。

BIツールでは、企業活動の結果としての売上や利益、市場シェアなどを主に算出し、事業部別、エリア別、製品別などの各種次元(ディメンジョン)で多面的な分析が可能である。

BIツールでは、どの事業部、あるいはエリアが優れた(劣った)結果を残しているか、という判断を行うことはできるが、なぜ結果が優れているか(劣っているか)という原因を推測することはできない。そもそも、結果につながる原因系データを分析対象とはしていないためである。


以上ご説明したように、両者の違いをまとめると、BIツールは、期末の通信簿のようなものであり、最終的な評価を下し、また次期のKGIの目標設定に役立てるもの。一方、プロセスマイニングツールは、期中の細かいパフォーマンスを分析して、KGIの目標達成のためにどのように改善すべきかを検討するために役立てるもの、と言えるでしょう。

なお、データの分析方法について、最近新たに生じてきたもうひとつの違いがあります。

BIツールは分析期間全体を対象とした過去データのスナップショットの数値を算出するのみであるのに対し、プロセスマイニングツールは、現在は知っている案件のデータを逐次分析するリアルタイムモニタリングを行う機能が付加されてきているということです。


企業・組織運営の状況を継続的に振り返り、改善すべき点は改善し、目標達成を確実にするためには、BIツールによるKGI評価とプロセスマイニングツールによるKPI評価の両方を併せて行うことが不可欠です。

現状は、両者のツールを組み合わせて活用する企業が増えていますが、冒頭に述べたように、プロセスマイニングツールとBIツールの境界はぼやけつつあり、将来的には融合して一体的なツールとして提供されていくことになると思われます。


Will Process Mining tool and BI tool be amalgamated?

The answer is yes. The integration has already begun.

In terms of specific developments, a process mining tool called “PAFnow” is available as an add-on for Power BI. Similarly, “MEHRWERK ProcessMining” is offered as an add-on for Qlik.

On the other hand, process mining tools have also been enriching their “dashboard features” in addition to the standard features of process mining, such as “process discovery” which automatically creates a process model from the event log, but this dashboard feature is now close to the level of functionality provided by BI tools.

By the way, both process mining tools and BI tools are the same in that they take in various data related to corporate and organizational management, calculate numbers from various angles, and present the results visually in tables and graphs.

The decisive difference between a process mining tool and a BI tool is in how the calculation results are interpreted and utilized.

Concretely, we can explain as follows.

Calculation results presented by process mining tools

Process mining tools mainly look to performance of activities (processes) that create value = causals. In other words, process mining tools mainly cover Key Performance Indicators (KPIs).

For example, in the case of an insurance company’s claims processing process (from insurance claim to payment), process mining tools can analyze the number of cases for each activity in the process, the total time required for processing (throughput), processing cost, and the number of people in charge, and so on. In addition, the process discovery function can automatically draw a flowchart of business procedures to identify problems such as bottlenecks and inefficient repetitive tasks.

In this way, by analyzing activities that create value, i.e., causal data analysis, it is possible to link them to business process improvement measures to further increase value or reduce costs.

Calculation results presented by BI tools

BI tools mainly look at The size of value (sales, profit, etc.) generated = outcomes. In other words, BI tools cover KGI (Key Goal Indicator).

BI tool basically calculates sales, profit, market share, etc. as a result of corporate activities, and enables multifaceted analysis in various dimensions such as by division, area, and product.

BI tools can make judgments about which business units or areas are producing superior (or inferior) results, but they cannot infer the causes of why results are superior (or inferior). This is because it does not analyze causal data in the first place.


As explained above, to summarize the differences between them, BI tools are like a report book at the end of the term, and they are used to make final evaluations and to set new goals for theKGI in the next term. On the other hand, process mining tools are used to analyze performance in detail during the period and consider how to improve it in order to achieve the goals of KGI.

There is one more difference in the way data is analyzed that has recently emerged.

While BI tools only calculate a snapshot figure of historical data for the entire analysis period, process mining tools are now adding the ability to perform real-time monitoring that sequentially analyzes the data of the cases in the processing.

In order to continuously look back on the status of corporate and organizational operations, and to improve what needs to be improved, ensuring the achievement of goals, it is essential to combine KGI evaluation using BI tools and KPI evaluation using process mining tools.

Currently, more and more companies are using a combination of both tools, but as mentioned at the beginning of this article, the boundary between process mining tools and BI tools is blurring, and in the future, they will be provided as a combined tool.

【速報】Gartner, Market Guide for Process Mining 2020

 米ITアドバイザリ企業Gartnerが、2020年版となる『Market Guide for Process Mining』を2020年9月30日に公開しました。

当記事では主なポイントを速報としてお伝えします。

最新版では、プロセスマイニングができること(Capabilities)がバージョンアップされています。具体的には以下の10個です。これらは、各種プロセスマイニングツールがおおむね提供している、あるいは今後提供を目指していると思われる機能とも言えます。


・プロセス、例外処理、案件、そして従業員の関わりについて自動的にモデル(フロー図など)を作成

・カスタマーとのやりとり、カスタマージャーニーを自動的にモデル化すること、および関連分析

・適合性検査、およびギャップ分析

・プロセスモデルの強化(改善)のための追加的分析(属性を付加した分析)

・データ前処理、データクレンジング、ビッグデータへの対応

・意思決定支援を可能にする、KPIの継続的モニタリングのためのリアルタイムダッシュボード

・予測的分析、処方的分析、シナリオ検証、シミュレーション

・プロセスマイニングアプリケーションを作成できるAPIを提供し、また高度な分析と意思決定支援が行える、様々なプロセスにまたがるプロセスマイニング分析のプラットフォーム

・様々な異なるプロセス間のやり取りや、それら複数のプロセスが同じワークステーションや職場、デスクトップPCでどのように実行されているかの分析

・ユーザーインタラクションログ(PC操作ログ)に基づくタスクマイニング分析


また、Gartnerは、プロセスマイニングが採用されるメインドライバーとして以下の4つを挙げています。

・デジタルトランスフォーメーション – Digital Transformation

・人工知能(AI) – Artificial Intelligence

・タスクオートメーション – Task Automation

・ハイパーオートメーション – Hyperautomation

ハイパーオートメーションとは、ひらたく言えば、RPAなどを用いたタスクオートメーション、ワークフローやiBPMSによるプロセスオートメーション、そしてDigitalOpsによる業務オペレーション全体の自動化をチャットボット、スマーとスピーカー、AI、機械学習などの様々なテクノロジーも組み込みながら実現していこうとするものです。


標準的なプロセスマイニングのユースケースとしては以下の5つが挙げられています。なお、アルゴリズムとは、イベントログからプロセスモデルを自動的に描くために、プロセスマイニングツールに組み込まれているものです。

・アルゴリズムによるプロセス発見、分析によるプロセスの改善

・アルゴリズムによるプロセスの比較、分析、検証による監査、コンプライアンスの改善

・自動化の機会の発見と検証によるプロセス自動化の改善

・戦略と業務を結びつけ、柔軟な組織を生み出すことによる、デジタルトランスフォーメーション(DX)の支援

・アルゴリズムによるITプロセスの発見と分析に基づく、IT業務のリソース最適化の改善


2020年版で示されているプロセスマイニングの代表的ベンダー・ツールは以下の20種類です。

 ABBYYTimeline
 ApromoreApromore
 BusinessOptixBusinessOptix
 CelonisCelonis Intelligent Business Cloud Platform
 Cognitive TechnologymyInvenio
 EverFlowEverFlow
 FluxiconDisco
 IntegrisExplora
 Lana LabsLANA Process Mining (Magellanic), LANA Connect (Rockhopper)
 LogpickrLogpickr Process Explorer 360
 MEHRWERKMEHRWERK ProcessMining (MPM)
 MinitMinit
 Process Analytics Factory (PAF)PAFnow
 Process Mining Groups at TUE and RWTHProM, ProM Lite, RapidProM, PM4Py
 Puzzle DataProDiscovery
 QPR SoftwareQPR ProcessAnalyzer
 SignavioSignavio Process Intelligence
 Software AGARIS Process Mining
 StereoLOGICStereoLOGIC 2020
 UiPathUiPath Process Mining, UiPath Task Mining

レポート内容詳細は、『Market Guide for Process Mining』の原文を参照ください。

Robidium – Robotic Process Mining Tool – PC操作ログから定型業務を抽出し、RPAスクリプトを自動記述

robidium toppage

Robidium – Robotic Process Mining Tool

「Robidium」は2020年9月にリリースされたRobotc Process Mining Toolです。

「Robotic Process Mining(RPM)」をご存じの方はまだ少ないでしょう。RPMは、タスクマイニングツールの一種です。

タスクマイニングは、PC操作ログ、すなわち、ブラウザーやエクセルなどを利用したPC作業を詳細に収集・記録し、個人単位での「タスク手順」を見える化してくれるソリューション。一般に、タスクマイニングの基本機能は、PC操作ログの収集からタスク手順の見える化までです。

しかし、RPMでは、さらに定型業務(ルーティンワーク)を自動的に抽出し、さらにそれをRPAのスクリプトとして記述してくれます。ソフトウェアロボットによる定型業務自動化までをカバーしてくれるので「Robotic Process Mining」と呼んでいます。

さて、RPMツール、「Robidium」による、PC操作ログの収集からRPAスクリプトの記述までの全体像は下図の通りです。

Source: Robidium Presentation

Source: Robidium Presentation


PC操作ログは、英語では、「UI(User Interaction)ログ」と呼ぶのが一般的です。ユーザーが、情報システム(PC上のアプリケーション)を操作する作業を詳細に記録します。(上図には記載ありませんが、ログ収集の対象となるPCにUIログ収集用のセンサー「RPA_UILogger」のインストールが必要です)

蓄積したUIログに対して分析を行い、ログの中から定型業務と想定される手順を自動的に抽出してくれます。(分析する前に、UIログデータのクリーニングのため、重複した業務などのノイズをフィルタリングしてくれる機能が別途あります)

自動的に抽出された定型業務のうち、RPAによる業務自動化が適切と考えられるものについては、RPAスクリプト(現在はUiPathのみ)を自動記述します。

RPAスクリプトが作成されたら、RPA(UiPath)でスクリプトを展開し、対象となった定型業務の流れが間違いなく実行されるかを検証した上で実装する。

以上ご説明したように、Robidiumでは以上のような手順でPC操作ログの収集からRPAロボット実装までの手順を支援してくれるツールであり、まだまだ技術的な課題があるものの、今後の普及が期待されます。

Robidiumのクラウドバージョンは現在無料でトライアルできます。

http://robidium.cloud.ut.ee/

以下、Robiduimの主な流れを示します。


Robidiumのトップページ

トライアル用のサンプルデータはトップページからダウンロードです。


データ前処理済のUIログをアップロードします。

*前処理機能は未提供

robidium interface log upload

パラメターの設定を行い、「IDENTIFY ROUTINES」を押下して分析を実行します。

robidium interface identify routines

定型業務(Routine)が4つ抽出されました。

robidium routine selection

定型業務の詳細手順を確認します。

robiduim interface routine detailes

RPAスクリプトを作成したい定型業務を選択し、「GENERATE SCRIPT」を押下するとスクリプトが作成されますので新規ファイルとして保存します。

robidium interface generate script

UiPathから上記スクリプトを展開します。以下はスクリプトの中身です。

uipath script

この後は、RPAツールでの作業となります。

プロセスマイニング入門(16)プロセスマイニングツール

Introduction to Process Mining (16)Process Mining Tools

今回は、「プロセスマイニングツール」について詳しく解説します。

プロセスマイニングツール - グローバル

現在、世界にはどんなプロセスマイニングツールがあるのか概観してみましょう。

2019年の時点で、大小合わせて30以上のプロセスマイニングツールが世界には存在していると言われています。 米ITアドバイザリ企業Gartnerが2019年6月に発表した、『Gartner, Market Guide for Process Mining, Marc Kerremans, 17 Jun 2019』においては、代表的なベンダー・ツールが19種類挙げられています。

  • Apromore – Apromore
  • Celonis – Celonis Process Mining
  • Cognitive Technology – myInvenio
  • Everflow – Everflow
  • Fluxicon – Disco
  • INTEGRIS Explora
  • Lana Labs – LANA Process Mining – Magellanic
  • Logpickr – Logpickr Process Explorer 360
  • Mehrwerk AG – MEHERWERK ProcessMining (MPM)
  • Minit – Minit
  • Process Anaytics Factory – PAFnow
  • Process Mining Groups at TUE and RWTH – ProM, ProM Lite, RapidProm M, PM4Py
  • Process Gold – ProcessGold *現在はUiPath Process Mining
  • Puzzle Data – ProDiscovery
  • QPR Software – QPR ProcesAnalyzer
  • Signavio – Signavio Process Intelligence
  • Software AG – ARIS Process Mining
  • StereoLOGIC – StereoLogic Process Analysis
  • TimelinePI – Process Intelligence Platform *現在はABBYY Timeline

プロセスマイニングはまだ新しい市場であるため、ベンダー各社のライセンス販売本数や売上もほとんどが非公開、調査会社による市場シェア等は当てになりません。とはいえ、Celonisが市場リーダーであることは間違いなく、2番手にCognitive Technology、さらにABBYY Timeline、Uipath Process Mining、 Minit、Signavioなどが続いている状況だと推測しています。

ユニークな存在としては、オープンソースのApromoreが挙げられます。同じくオープンソースのProMは主に学術的研究に利用されているのに対し、Apromoreは企業での活用も増えており、大規模ユーザーへの有償版の提供も始まっています。


Process Mining Products PEAK Matrix(R) Asessment 2020

ダラスに本社を置くコンサルティング&調査会社のEverest Groupは、2020年2月26日、主要なプロセスマイニングベンダー13社について、以下の2つの軸での市場ポジショニング(山脈に見立てているので「PEAK Matrix」)を発表しています。

横軸:Vision & Ability – Measures ability to deliver products successfully
製品開発ビジョンを示し、それに沿った製品を成功裡に提供できる能力

縦軸:Market Impact – Measures impact created in the market
市場に与えるインパクトの強さ

PEAK Matrixでは、競合製品をLeaders(リーダー)、Major Contenders(主要な競争相手)、Aspirant(上を狙う野望を持つ製品)の3つにカテゴライズします。Process Mining市場では、それぞれのカテゴリーに含まれる製品は次の通りです。

Leaders

  • Celonis
  • Software AG
  • UiPath(旧ProcessGold)

Major Contenders

  • ABBY Timeline
  • Apromore
  • LANA Labs
  • Logpickr
  • Minit
  • myInvenio
  • PAF now
  • QPR Software

Aspirants

  • Everflow
  • Puzzle Data

市場リーダーのCelonisは既に社員数900人を抱え、大型の資金調達にも成功して「ユニコーン」としても認められる存在。そして、リーダーグループの一角を占めるSoftware AGは、「ARIS」のブランドで知られ、「ARIS Process Mining」の販売にも力を入れてきています。Uipath社は、買収したProcessGoldを「UiPath Process Mining」に名称を変え、UiPathが強みを持つRPAを含むトータルソリューションとして提案力を強化しています。

process mining technology vendor landscape with products PEAK Matrix(R) Assessment 2020
process mining technology vendor landscape with products PEAK Matrix(R) Assessment 2020
Everest Group

プロセスマイニングツール - 日本

2020年8月時点で、日本において活用可能な主要プロセスマイニングツールをご紹介します。

留意していただきたいことがあります。「ツールを活用する」ということだけであれば、日本に拠点や代理店がなかったとしても、直接ベンダーに連絡すればライセンス購入可能です。しかし、プロセスマイニングツールは高度で複雑なツールです。「ちょっとお試し」、だったとしても残念ながら、そう簡単には使いこなせません。

そもそも、業務プロセス改善を目的とする「プロセスマイニングソリューション」の観点からは、ツールの操作方法の最低限のトレーニングに加え、データ前処理、分析結果の解釈など、専門性の高い人材が不可欠です。

多くの企業では、自前の人材だけでプロセスマイニングを導入して成果を出すことは難しいと思いますので、日本企業に対して、ツール操作トレーニング、データ前処理支援などのプロフェッショナルサービスを併せて提供してくれる代理店なりコンサルティング会社の存在がある主要なツールのみをここではご紹介します。


セロニス(Celonis)

大手コンサルティング会社を始め、多くのパートナー企業と共にプロセスマイニング導入・運用の関連サービスを提供。

→ Celonis 日本

マイインベニオ(myInvenio) 

独占販売契約を結んでいるハートコアがライセンス販売に加え、トレーニングをはじめ、各種プロフェショナルサービスを提供。

→ ハートコア株式会社(日本総代理店)

シグナビオ(Signavio)

イントラマート社が、Signavio Process Miningを活用した「DXアプローチメソッド」を提供。

→ 株式会社NTTデータ イントラマート(パートナー契約)

アビー・タイムライン(ABBYY Timeline)

OCR製品で知られるABBYY社が、TimelinePI社を買収して提供開始したプロセスマイニングツール。

→ ABBYY 日本

UiPathプロセスマイニング(Uipath Process Mining)

RPA大手、UiPath社が旧Process Gold社を買収して自社ソリューションラインナップに追加。

→ Uipath 日本

ラナ・プロセスマイニング(LANA Process Mining) 

リグリット・パートナーズが、ラナ・プロセスマイニングを活用した「オペレーションアセスメントサービス」を提供。

→ 株式会社リグリット・パートナーズ(パートナー契約)

プロセスマイニングツール評価レポート – NEAT Report:Process Discovery & Mining 2020 (NelsonHall)

NEAT Evaluation Report: Process Discovery & Mining 2020 by NelsonHall

IT、ビジネスサービス業界を対象とする調査分析会社、NelsonHall社が、プロセスマイニング市場の主要ベンダーについての評価レポート(NEAT: NelsonHall Vendor Envaluation & Assessment Tool)を6月2日に公表しました。

ツールの評価ポジショニングマップを引用することは難しいため、言葉での説明に留めます。ポジショニングマップをご覧になりたい方は、本文末尾の参照元をご覧ください。

さて、ポジショニングマップにおける評価の2次元は、横軸が「将来のクライアント要件に対応する能力」、縦軸は「今すぐのベネフィットを提供できる能力」です。この2軸からポジショニングマップは4象限に区分されています。右上がリーダー、右下がイノベーター、左上がハイアチーバー(高達成者)、左下がメジャープレーヤーの区分です。

評価対象となったベンダーは以下の15社です。各種業務システムから抽出したイベントログを対象とする分析ツールだけでなく、PC操作ログを対象とする分析ソリューションを提供するベンダーも含まれています。このため、Gartnerのプロセスマイニング・マーケットガイドで紹介されている主要ベンダーとは多少違いがあります。

1 ABBYY

2 BusinessOptix

3 Celonis

4 EdgeVerve

5 Kryon

6 Lana Labs,

7 myInvenio

8 NICE Systems

9 Process Diamond

10 QPR Software

11 Signavio

12 Skan

13 Software AG

14 UiPath

15 UpFlux

上記ベンダーのうち、ポジショニングマップのリーダー象限には、Celonis、Software AG、ABBYY、UIPathが位置付けられています。イノベーターには、QPR、Signavio、NICE、ハイアチーバーとしてはmyInvenioが置かれています。

詳細は、NelsonHall社のWebサイト、およびCelonis社のコンテンツをご確認ください。

Process Discovery & Mining 2020 NelsonHall NEAT Analysis

Celonis Named a Leader i NelsonHall NEAT Assessment: Process Mining, Process Discovery, Process Automation, Workforce Automation

プロセスマイニングツール – 分析目的から機能を整理する

functioanly based on the purpose of analysis

Organizing the functionality of a process mining tool based on the purpose of analysis
English follows Japanese. Before proofread.

イベントログに基づいて分析を行うプロセスマイニングツールは基本的に非常に多機能であり、日々新たな機能が追加されている進化途上のツールです。一通りの説明やデモを受けただけでは、プロセスマイニングツールの機能概要を理解するのは簡単ではありません。

そこで、当記事では、どのような分析を行いたいのか、すなわち「分析目的」を起点にして、どのような機能があるのかを整理してみましょう。

なお、主要な機能に絞っていること、および、タスクマイニングはまだ技術的に未成熟な機能であることからあえて外していることにご留意ください。

さて、プロセスマイニングツールを使った分析の切り口も実にたくさんあるのですが、大きく以下の4つに分けて考えたいと思います。

1 プロセスフォーカス

プロセスマイニングの基本的な分析視点です。対象プロセスがどのようなフローになっているかを中心に分析するものです。

2 組織フォーカス

プロセスマイニング分析を行うためのデータ必須3項目は、プロセスID、アクティビティ、タイムスタンプです。この3項目に加えて、準必須の項目として標準的に分析されるのが、「リソース(担当ユーザー)」と「ロール(所属部署・役職)」です。

組織フォーカスでは、プロセス自体に加えて当該プロセスを遂行する担当者やその所属部署や役職の視点での分析を行っていきます。

このアプローチは、「オーガニゼーショナルマイニング」と呼ぶこともあります。

3 シミュレーションフォーカス

文字通り、なんらかのパラメターを設定してシミュレーションを行うアプローチです。

4 オペレーションフォーカス

プロセスマイニング分析は基本的には過去の完了したデータを対象としますが、現在走っている、未完了のプロセスをリアルタイムに分析するアプローチです。

それでは、それぞれの切り口ごとに分析目的と対応する機能を示します。


1 プロセスフォーカス

1.1 プロセスのバリエーションがどうなっているか知りたい

    ⇒ バリアント分析

1.2 プロセスを流れていく件数を見たい

    ⇒ 頻度分析機能

1.3 プロセスの所要時間(スループットやアクティビティ間など)を見たい

    ⇒ パフォーマンス分析機能

1.4 標準プロセス(to beプロセス)と比較しての逸脱プロセスを発見したい

    ⇒ 適合性検査機能

1.5 複数のプロセスバリエーションを比較したい

    ⇒ 比較分析機能

1.6 非効率やボトルネックなどの問題が起きている要因を深堀したい

    ⇒ 根本原因分析機能

1.7 KPIの目標値(スループット、処理時間など)とのズレを把握したい

    ⇒ KPI設定機能

1.8 プロセスの分岐(ゲートウェイ)におけるビジネスルールを把握したい

    ⇒ ビジネスルールマイニング機能

1.9 BPMN準拠のモデルを作成したい

    ⇒ BPMNモデル変換機能

    ⇒ BPMNモデル作成・編集機能


2 組織フォーカス

2.1  どの担当者がどのアクティビティを担当しているかを把握したい

    ⇒ アクティビティマップ機能

2.2 各担当者の処理件数や処理時間を算出したい

    ⇒ カスタマイズダッシュボード作成機能

2.3 対象プロセスの中で、担当者同士がどのように関わりあっているかを把握したい

    ⇒ ソーシャルネットワーク機能


3 シミュレーションフォーカス

3.1 プロセスの一部を変更したり、RPA化した場合の効果を検証したい

    ⇒ シミュレーション機能


4 オペレーションフォーカス

4.1 未完了のプロセスについて、あとどのくらいの時間で完了するかを推定したい

    ⇒ 予測分析機能

4.2 未完了のプロセスについて、スループットを短縮するために取るべき手順を推定したい

    ⇒  プロセス推奨機能

4.3 逸脱プロセスが発生した場合にアラートを担当者に出したい

    ⇒  アラート機能


以上、分析の目的に応じたプロセスマイニングツールの機能を整理しました。ツールによってぞれぞれの機能名称が異なりますのでご注意ください。

ツール選定にあたっては、自社の分析対象プロセスをどのような視点で分析したいかを把握した上で、候補ツールの機能有無の確認を行ってください。

functioanly based on the purpose of analysis

Organizing the functionality of a process mining tool based on the purpose of analysis

Process mining tools that perform analysis based on event logs are basically very versatile and are evolving with new features being added every day. It’s not easy to get an overview of the features of a process mining tool when you’ve just been given a one-size-fits-all explanation or demo.

So, in this article, let’s start with what kind of analysis you want to do, that is, the “purpose of the analysis”, and organize what kind of function it has.

Please note that we have deliberately left out task mining because it is a technologically immature feature and we are focusing on the main features.

Now, there are many ways to analyze using process mining tools, but I would like to divide them into the following four main categories.

1 Process Focus

This is the basic analytical perspective of process mining. The analysis focuses on the flow of the target process.

2 Organizational Focus

The three required data items for process mining analysis are process ID, activity, and time stamp. In addition to these three items, “resource (user in charge)” and “role (department and position)” are typically analyzed as semi-requisite items.

In addition to the process itself, the Organizational Focus analyzes the process from the perspective of the people in charge of executing the process and their departments and positions.

This approach is sometimes referred to as “organizational mining”.

3 Simulation Focus

Literally, it’s an approach to simulating by setting up some parameters.

4 Operational Focus

Process mining analysis is essentially an approach that targets previously completed data, but analyzes currently running and uncompleted processes in real time.

Let’s take a look at the analysis objectives and corresponding functions for each cut.

1 Process Focus

1.1 I want to know what the variations of the process are.

    ⇒ Variant Analysis

1.2 I’d like to see the number of cases flowing through the process.

    ⇒ Frequency analysis function

1.3 I want to see the time required for a process (throughput, lead time between activities, etc.)

    ⇒ Performance analysis function

1.4 I want to Discover deviant processes compared to standard processes (to be processes)

    ⇒ Conformity inspection function

1.5 I want to compare multiple process variations.

    ⇒ Comparative analysis function

1.6 I would like to delve deeper into the causes of the problem regarding inefficiencies and bottlenecks in the process.

    ⇒ Root cause analysis function

1.7 I want to understand the deviation from the KPI target values (throughput, processing time, etc.).

    ⇒ KPI setting function

1.8 I want to understand the business rules in the process branch (gateway).

    ⇒ Business Rule Mining Function

1.9 I want to create a BPMN-compliant model.

    ⇒ BPMN model conversion function

    ⇒ BPMN model creation and editing functions

2 Organizational Focus

2.1 I want to know which person is in charge of which activity.

    ⇒ Activity Map Function

2.2 I want to calculate the number of processes and processing time for each person in charge.

    ⇒ Create customized dashboards

2.3 I would like to understand how those in charge of the process relate to each other in the target process.

    ⇒ Social network function

3. Simulation Focus

3.1 We want to verify the effects of changing a part of the process or implementing RPA.

    ⇒ Simulation function

4 Operational Focus

4.1 I want to estimate how much more time it will take to complete an incomplete process.

    ⇒ Predictive analysis function

4.2 I’d like to estimate the steps to be taken to shorten the throughput of an incomplete process.

    ⇒ Recommended process functions

4.3 I want to send an alert to a person in charge when a deviation process occurs.

    ⇒ Alert function

Above, we have organized the features of the process mining tool according to the purpose of the analysis. Please note that the function names of each tool are different.

When selecting a tool, understand how you want to analyze the process to be analyzed from the perspective of your company, and then confirm whether the candidate tool has any functions.

functioanly based on the purpose of analysis

プロセスマイニングベンダー最新評価レポート2020 – Everest Group PEAK Matrix(R) 2020

evelest

Process Mining Products PEAK Matrix(R) Asessment 2020

ダラスに本社を置くコンサルティング&調査会社のEverest Groupは、2020年2月26日、主要なプロセスマイニングベンダー13社について、以下の2つの軸での市場ポジショニング(山脈に見立てているので「PEAK Matrix」)を発表しています。

→ 2021年版(2021年6月4日リリース)の速報はこちらから

横軸:Vision & Ability – Measures ability to deliver products successfully
製品開発ビジョンを示し、それに沿った製品を成功裡に提供できる能力

縦軸:Market Impact – Measures impact created in the market
市場に与えるインパクトの強さ

PEAK Matrixでは、競合製品をLeaders(リーダー)、Major Contenders(主要な競争相手)、Aspirant(上を狙う野望を持つ製品)の3つにカテゴライズします。Process Mining市場では、それぞれのカテゴリーに含まれる製品は次の通りです。

Leaders

  • Celonis
  • Software AG
  • UiPath(旧ProcessGold)

Major Contenders(アルファベット順)

  • ABBY Timeline
  • Apromore
  • LANA Labs
  • Logpickr
  • Minit
  • myInvenio
  • PAF now
  • QPR Software

Aspirants

  • Everflow
  • Puzzle Data

→Matrix図はこちら

市場リーダーのCelonisは既に社員数800人を抱え、大型の資金調達にも成功して「ユニコーン」としても認められる存在。そして、リーダーグループの一角を占めるSoftware AGは、「ARIS」のブランドで知られ、「ARIS Process Mining」の販売にも力を入れてきています。また、先ごろ買収したProcessGoldを「UiPath Process Mining」と名称を変え、UiPathが強みを持つRPAを含んだトータルソリューションとして提案力を強化しています。

Major Contender、すなわちリーダーグループに闘いを挑んでいる主要な競争ベンダーはまさに群雄割拠という状況。なお、私が把握している限りですが、日本においてなんらか連絡先があるのは、ABBYY Timeline、LANA Lab、myInvenioの3つだけです。

Aspirantsは、虎視眈々と上を目指してがんばっているベンダーというところでしょうか、韓国で独自開発され、韓国企業での導入実績を増やしているPuzzle Dataが取り上げられているところが興味深いです。

Gatnerの市場ポジショニングマップである「Magic Quadrant」のプロセスマイニング市場版がまだ発表されていない状況( 2020年2月)で、PEAK Matrixは、市場を概観できる良いレポートですね。

レポート詳細は有料となるようですが以下から入手可能です。

Process Mining – Technology Vendor Landscape with Products PEAK Matrix(R) Assessment 2020


プロセスマイニングツール比較検討のための「機能チェックリスト」

function checklist preview

Checklist for functionalities of process mining tool

現在、世界各国でプロセスマイニングに取り組む企業・組織がどんどん増えています。

プロセスマイニングはビッグデータ分析であり、イベントログから、業務手順を再現したフローチャート(プロセスモデル)を作成するためには特殊なアルゴリズムが必要です。このため、一般的なBIツールではなく、プロセスマイニングツールを利用することが求められます。

今のところ、世界には30以上のプロセスマイニングツールがあり、うち、ガートナーのマーケットガイド(2019年版)では、代表的なプロセスマイニングツールとして19個のベンダー・ツールが紹介されています。

日本においては、「データ前処理支援」など、プロフェショナルサービスなどを含めて利用可能なプロセスマイニングツールは現在数種に限定されます。しかし、日本のプロセスマイニング市場も立ち上がりつつあることから、様々なベンダーが日本でのツール提供を開始することでしょう。

さて、プロセスマイニングツール導入を考えているすユーザー企業として悩ましいのは、どのツールがどんな機能を備えているかを確認し、比較検討することが大変だということでしょう。

プロセスマイニング・イニシアティブでは、できるだけ中立的な立場で各種ツールの比較検討をお手伝いできますが、まずは検討対象のプロセスマイニングツールがどんな機能をどの程度備えているかを記述するための「プロセスマイニングツール機能チェックリスト」を無料提供しています。当チェックリストをぜひ欲しいという方は、お問い合わせフォームから、「機能チェックリスト希望」と記入してご連絡ください。折り返し、PDF版をメール添付にてお送りします。

機能チェックリストに掲載している機能項目は以下の通りです。

プロセス発見 – Process Discovery
 頻度分析 – Frequency Analysis
 パフォーマンス分析 – Performance Analysis
 バリアント分析 – Variant Analysis
 フィルター – Filtering
 比較分析 – Comparison Analysis
適合性検査 – Conformance Checking
基本統計量表示 – Process Intelligence(Basic Statistics)
KPI設定 – KPI setting
カスタマイズダッシュボード作成 – Dashboard customization
運用サポート – Operational support
BPMNモデル変換・作成 – BPMN modeling
シミュレーション – Simulation

プロセスマイニング関連ツールの位置づけを整理整頓する!

work place analytics overview in english

Positioning of process mining-related tools from Workplace Analytics perspective
English follows Japanese. Before proofread.

「プロセスマイニング」は1990年代末に誕生し、昨年、20歳の誕生日を迎えたばかりの新しい分析手法ですが、2019年には新たに「タスクマイニング」という概念が登場しました。

当記事では、プロセスマイニング、タスクマイニングに、これらのソリューションと類似のソリューションである「SIEM:Security Information and Event Management」を含めて、狙いや位置づけの違いを整理整頓してみたいと思います。

まず、プロセスマイニングとタスクマイニングの違いについて。簡単に説明するなら、分析対象となるデータが異なります。

プロセスマイニングは、ERPやCRM、SFAなどの業務システムに記録・蓄積されたイベントログ(トランザクションデータ)を抽出したものが分析対象です。記録されているデータは、「購買申請」、「購買承認」など、システムの「送信」や「更新」ボタンを押下したタイミングの活動が基本で、業務の「節目(マイルストーン)」だけの粒度の粗いものです。

一方、タスクマイニングは、従業員が各自操作するPC上での詳細な操作、具体的には、アプリの起動、ファイルオープン、マウスクリックやコピー&ペーストなどが記録された「PC操作ログ」が分析対象となります。業務システムから抽出されたイベントログと比べると、これ以上分解できない「アトミック(原子的)」な詳細データであり、タスクレベルでの分析が可能です。なお、こうしたPC操作ログは、どこかに記録されているものではないため、分析対象となるPCに、センサー、あるいはエージェントと呼ばれるソフトをインストールして、能動的にPC操作をデータとして捕捉、収集サーバに蓄積する仕組みが必要となります。

プロセスマイニング、タスクマイニングに隣接した類似ソリューションに「SIEM」があります。これは、セキュリティ機器、ネットワーク機器、およびサーバに残されている各種ログを分析することで、サイバーアタック、データ漏洩などのセキュリティに関わる問題を発見する、また、IT機器の資産としての管理を行う、といったことが目的になります。

さて、これらのソリューションは、基本的に「職場(ワークプレイス)」で発生しているデータを分析することから、大きくは「ワークプレイスアナリティクス(Workplace Analytics)」という枠組みに入れることができるでしょう。

それでは、ワークプレイスアナリティクスの枠組みで、プロセスマイニング、タスクマイニング、SIEM、およびそれぞれのキーソリューションを位置付けてみましょう。(下図参照)

図の下部の両矢印あたりをご覧ください。プロセスマイニングは「プロセス改善志向」であり、一方、「SIEM」は、「リスク回避・管理志向」です。タスクマイニングその中間に位置しています。なぜなら、タスクマイニングでは従業員の日々の業務内容全体を把握できるため、勤怠管理にも活用できるからです。(プロセスマイニングは、業務システム上で行われた操作だけのデータが分析対象のため、一日の業務全体を把握することはできません)

また、プロセスマイニングとタスクマイニングは、「プロセスインテリジェンス」という枠組みで囲むことができますが、SIEMは、「プロセス」を分析対象とはしていないため、含まれません。

そして、プロセスマイニングは、企業全体のプロセス改革やデジタルトランスフォーメーション(DX)の視点からのアプローチに有効であることから「DX志向」、一方、タスクマイニングは、最終的にはタスクレベルでの自動化であるRPAを目的とすることが多いため、「RPA志向」と言えるでしょう。

では、それぞれのカテゴリーのキーソリューションを見ていきましょう。現時点(2020年2月)において、日本のプロセスマイニング市場のキープレーヤーは、CelonoisとmyInvenioの2つ。両ツールとも豊富な機能と優れた操作性を備えたエンタープライズソリューションであり、大企業を中心に導入企業が増えています。そしてつい最近、両ツールとも「タスクマイニング機能」を追加しています。業務システムからのイベントログデータだけでなく、PC操作ログからのフローチャート(プロセスモデル)も作成可能とすることで、タスクレベルでの自動化を目指すRPA化に必要な分析ニーズに対応したものだと言えるでしょう。

タスクマイニングのカテゴリーでは、myInvenioの日本総代理店であるハートコアが、「Heartcore Task Mining」を提供。また、銀行業界を中心に導入実績のある「MeeCap」は、ERPなどからのイベントログも分析するプロセスマイニング機能へと拡張を始めています。

SIEMカテゴリーでは、Splunkや、Skysea Viewが知られていますが、SPlunkが、プロセスのフローチャート機能を追加してきています。ただし、イベントログを取り込んだ分析までは行えないようです。

以上、ワークプレイスアナリティクスの枠組みでプロセスマイニング、タスクマイニング、SIEMの目的や位置づけを整理整頓してみました。

職場の業務改革のための各種ソリューション比較検討の参考になれば幸いです。


“Process mining” was born in the late 1990s and last year turned 20 years old. In 2019, a new concept called “task mining” appeared.

In this article, I would like to organize and sort out the differences in purpose and positioning, including “SIEM: Security Information and Event Management”, which is a similar solution to process mining and task mining.

First, the difference between process mining and task mining. In simple terms, the data to be analyzed is different.

Process mining analyzes the event logs (transaction data) recorded and accumulated in business systems such as ERP, CRM, and SFA. The recorded data is based on activities such as “purchase request” and “purchase approval” when the “send” or “update” button of the system is pressed, and the granularity of only the “milestone” of the business Is a rough thing.

On the other hand, task mining analyzes the detailed operations on PCs that employees operate individually, specifically, the “PC operation log” that records application launches, file opens, mouse clicks, copy and paste, etc. Eligible. Compared to the event log extracted from the business system, it is “atomic” detailed data that cannot be further decomposed and can be analyzed at the task level. Since these PC operation logs are not recorded anywhere, install software called sensors or agents on the PC to be analyzed and actively capture and collect PC operations as data. A mechanism to accumulate on the server is required.

“SIEM” is a similar solution adjacent to process mining and task mining. It analyzes security logs, network devices, and various logs remaining on servers to find security-related issues such as cyber attacks and data leaks, and manages IT devices as assets. And so on.

Now, since these solutions basically analyze data generated in the “workplace”, they can be broadly put into the framework of “Workplace Analytics”.

Now let’s position process mining, task mining, SIEM, and their key solutions within the framework of workplace analytics. (See the figure below)

Look around the double arrow at the bottom of the figure. Process mining is “process improvement oriented”, while “SIEM” is “risk aversion and management oriented”. Task mining is located in the middle. This is because task mining can be used for attendance management because it allows you to understand the entire daily work of employees. (In process mining, since only the data of operations performed on the business system is the analysis target, it is not possible to grasp the entire business of the day.)

In addition, process mining and task mining can be surrounded by the framework of “process intelligence”, but SIEM is not included because “process” is not analyzed.

And process mining is “DX-driven” because it is effective for process reform of the entire company and approach from the viewpoint of digital transformation (DX), while task mining is ultimately an automation at the task level Because it is often aimed at a certain RPA, it can be said that it is “RPA-driven”.

Let’s look at the key solutions in each category. At this time (February 2020), two key players in the Japanese process mining market are Celonois and myInvenio. Both tools are enterprise solutions with rich functions and excellent operability, and the number of enterprises, especially large enterprises, is increasing. And recently, both tools have added a “task mining function”. By being able to create not only event log data from business systems, but also flow charts (process models) from PC operation logs, it can be said that it meets the analysis needs necessary for RPA to aim for task-level automation Will be.

In the task mining category, heartcore, myInvenio’s sole agent in Japan, provides Heartcore Task Mining. In addition, MeeCap, which has a track record of introduction in the banking industry, has begun to expand to a process mining function that analyzes event logs from ERP and other sources.

In the SIEM category, Splunk and Skysea View are known, but Splunk has added a process flowchart function. However, it seems that analysis cannot be performed until the event log is imported.

プロセスマイニングツール – 日本 Feb2020

Available process mining tools – Japan Feb2020

当記事では、2020年2月時点で、日本において利用可能なプロセスマイニングツールをご紹介します。

留意していただきたいことがあります。「ツールを利用する」ということだけであれば、日本に拠点や代理店がなかったとしても、直接ベンダーに連絡すればライセンス購入可能です。しかし、プロセスマイニングツールは高度で複雑なツールです。「ちょっとお試し」、だったとしても残念ながら、そう簡単には使いこなせません。

そもそも、業務プロセス改善を目的とする「プロセスマイニングソリューション」の観点からは、ツールの操作方法の最低限のトレーニングに加え、データ前処理、分析結果の解釈など、専門性の高い人材が不可欠です。

多くの企業では、自前の人材だけでプロセスマイニングを導入して成果を出すことは難しいと思いますので、日本企業に対して、ツール操作トレーニング、データ前処理支援などのプロフェッショナルサービスを併せて提供してくれる代理店なりコンサルティング会社の存在があるツールのみをここではご紹介します。

とういうわけで、現在日本において、比較検討が可能なプロセスマイニングツールは以下の4つです。なお、以下は公開された情報に基づいています。ここに掲載がなく、「当社のツールも日本での販売開始してます」「うちも代理店として扱ってるよ」という会社様はお知らせください。

セロニス(Celonis)

日本法人あり。アビームコンサルティングなど、大手コンサルティング会社とグローバルなアライアンス契約を結んでいる。日本語ローカライズ済。

→ Celonis

マイインベニオ(myInvenio) 

独占販売契約を結んでいるハートコアがライセンス販売に加え、トレーニングをはじめ、各種プロフェショナルサービスを提供。日本語ローカライズ済。

→ ハートコア株式会社(日本総代理店)

シグナビオ(Signavio)

イントラマート社が、Signavio Process Miningを活用した「DXアプローチメソッド」を提供。日本語ローカライズ済。

→ 株式会社NTTデータ イントラマート(パートナー契約)

アビー・タイムライン(ABBYY Timeline)

OCR製品で知られるABBYY社が提供するプロセスマイニングツールです。日本語ローカライズ済。

→ ABBYY 日本

ラナ・プロセスマイニング(LANA Process Mining) 

リグリット・パートナーズが、ラナ・プロセスマイニングを活用した「オペレーションアセスメントサービス」を提供。日本語ローカライズ済。

→ 株式会社リグリット・パートナーズ(パートナー契約)

プロセスマイニングツール – グローバル Feb2020

Process mining tools – global Feb2020

現在、世界にはどんなプロセスマイニングツールがあるのか概観してみましょう。

2019年の時点で、大小合わせて30以上のプロセスマイニングツールが世界には存在していると考えられます。 米ITアドバイザリ企業Gartnerが2019年6月に発表した、『Gartner, Market Guide for Process Mining, Marc Kerremans, 17 Jun 2019』においては、代表的なベンダー・ツールが19種類挙げられています。

  • Apromore – Apromore
  • Celonis – Celonis Process Mining
  • Cognitive Technology – myInvenio
  • Everflow – Everflow
  • Fluxicon – Disco
  • INTEGRIS Explora
  • Lana Labs – LANA Process Mining – Magellanic
  • Logpickr – Logpickr Process Explorer 360
  • Mehrwerk AG – MEHERWERK ProcessMining (MPM)
  • Minit – Minit
  • Process Anaytics Factory – PAFnow
  • Process Mining Groups at TUE and RWTH – ProM, ProM Lite, RapidProm M, PM4Py
  • Process Gold – ProcessGold
  • Puzzle Data – ProDiscovery
  • QPR Software – QPR ProcesAnalyzer
  • Signavio – Signavio Process Intelligence
  • Software AG – ARIS Process Mining
  • StereoLOGIC – StereoLogic Process Analysis
  • TimelinePI – Process Intelligence Platform *2019年にABBYY社が買収

さて、これらのうち、グローバルなマーケティング&セールス活動に積極的と感じられ、Webサイトを通じて有益な情報を提供しているとして、私が日ごろからチェックしているのは、以下の10のツール・ベンダーです。

プロセスマイニングはまだ新しい市場であるため、ベンダー各社のライセンス販売本数や売上もほとんどが非公開、調査会社による市場シェア等は当てになりません。とはいえ、Celonisが市場リーダーであることは間違いなく、2番手にCognitive Technology、さらにLana Labs、ProcessGold、 Minitなどがそれぞれがんばっているという状況だと推測しています。

ユニークな存在としては、オープンソースのApromoreが挙げられます。同じくオープンソースのProMは主に学術的研究に利用されているのに対し、Apromoreは企業での活用も増えており、大規模ユーザーへの有償版の提供も始まっています。

なお、ProcessGoldは、2019年末、RPAベンダーのUiPathに買収され、同社の製品ラインアップのひとつとして販売される形となりました。このため、2020年3月に、「UiPath Process Mining」という名称に変更されています。