プロセスマイニング入門(13)運用サポート

Introduction to Process Mining (13)Operational Support

今回は、「運用サポート」について詳しく解説します。

運用サポート - Operational Support

プロセスマイニングは、プロセス発見、すなわち過去の、完了済みプロセスのイベントログからas-isプロセスを把握することが出発点です。さらに、適合性検査やプロセス強化によって、新たな業務プロセスを定義し、新業務プロセスべーすでの運用を始めたら、その後は、着実に、逸脱なく、新業務プロセスが実行されているかを継続的にモニタリングすべきでしょう。

運用サポートでは、現在走っている「未完了のプロセス」のデータをプロセスマイニングツールにリアルタイムで流し込み、完了までの推定リードタイムを予測したり、逸脱した手順や過度の業務集中、ボトルネックの発生を捕捉し、関係者に通知、即時の是正を図るものです。

下図は、購買プロセスにおいて、未完了の案件、すなわち現在仕掛中のプロセスについて、リアルタイム(現実には1日1回のバッチによるデータ自動流し込みが多い)でイベントログデータをプロセスマイニングツールに流し込みます。

そして、この例では、購買申請から発注決定へと直接の流れが発生していることについて、購買承認、見積もり依頼という正当な手順を端折った案件と認定され、担当者に対し「コンプライアンス違反となる逸脱が発生してますよ」というメッセージをメールやメッセンジャーで送信します。もちろん、このようなアラートメッセージを送信するためには、事前に各種ルールを設定しておく必要があることは言うまでもありません。

また、プロセスマイニングツールによっては、予測分析機能も実装されており、現在仕掛中の案件について、スループットがKPI目標値に収まるかどうかを推測し、目標値より長くなりそうなプロセスを発見することができます。

スループットが目標より長くなるということ、すなわち受注プロセスであれば、納期が予定よりも遅れる可能性があるということであり、放置すれば顧客からのクレームが発生したり、処理コストの上昇を招いたりするため、直ちに何らかの措置を取り、スループット短縮を目指す必要があるわけです。

この予測分析を実行するためには、過去のイベントログデータに基づく「所要時間予測モデル」を開発し、プロセスマイニングツールに組み込まなければなりません。そこで、AI(人工知能)の機能も併せてツールに実装されています。

プロセスマイニング分析は、BPRや業務改革プロジェクトにおいてひと回ししたら終わりではありません。新業務プロセスへと改訂後の効果検証とモニタリングを通じて、継続的なプロセス改善(Continuous Process Improvement)につなげてこそ、その最大の価値を手にすることができます。