Introduction to Process Mining (17)Outlook for the Future of Process Mining
今回は、これまでのまとめも踏まえ「プロセスマイニングの将来展望」について解説します。
プロセスマイニングの分析対象の拡大
プロセスマイニングの分析は、2000年代当初からはまずSAPなどのERPシステムが主な対象となりました。したがって具体的には、「購買プロセス(P2P:Procure to Pay)」や、「受注プロセス(O2C: Order to Cash)「」、および経理業務に含まれる「買掛金管理プロセス(Account Payable)」、「売掛金管理プロセス(Account Receivable)」が多く分析されてきました。
近年は分析対象が拡大しつつあります。例えば、販売・マーケティングのプロセス、すなわち集客からの見込客獲得・育成を行うマーケティング活動、および有望見込客に対して行う、受注に至るまでの営業活動を分析する企業が増えつつあります。この背景には、マーケティング活動は、マーケティングオートメーション(MA)と呼ばれる支援ツールが普及し、また営業活動についてはSFA(Sales Force Automation)と呼ばれる支援ツールが普及したことがあります。すなわち、マーケティング、セールスのデジタル化が進んだことによって、プロセスマイニング分析対象となりうるイベントログデータが生成されるようになったわけです。
同様に、販売後のサービス活動、すなわちカスタマーサポートについても、コールセンターのシステムや、主にクラウドで提供されるカスタマサポート支援ツールが普及したことで、カスタマーサポートプロセスもプロセスマイニングの対象となることが増えてきました。
一方、データが多様でイベントログデータの抽出、前処理が難しいのが生産プロセスです。また生産プロセスの場合、デジタルで捕捉されない工程が多く含まれています。このため、生産プロセスを対象とするプロセスマイニングの実績はあまり多くないのが実情です。
しかしながら、生産ラインにIOTを設置することで、センサーにより生産工程の進捗度合いを自動的に記録する工場が増加しつつあることから、今後、生産工程のプロセスマイニング分析も増えていくことでしょう。
以上は、企業活動の中核となる価値創出プロセスにおける今後の展開について語りましたが、次に管理系プロセスおけるプロセスマイニングの展開を考えてみましょう。
前述したように、ERPからのデータ抽出が容易な買掛金管理、売掛金管理のプロセスマイニング分析は多く行われてきました。近年、活用が試みられているのは、人的資源管理(Human Resource Management)や研究開発(Research & Development)のプロセスです。
人的資源管理は、人材の採用、育成、評価、昇進など多岐にわたるプロセスが存在しますが、支援ツールによる管理がそれほど普及していないこともあって、そもそものデータが存在していないという課題があります。とはいえ、人材の採用から入社時の各種対応(オンボーディング)についてはツールが活用されていることも多く、このオンボーディングプロセスが分析されるケースが見られるようになってきました。
研究開発については、多くがプロジェクトベースで進められること、研究には試行錯誤が不可欠であり、直線的な標準手順というものが実質的に存在しないことから、そもそも改善すべき課題設定が簡単ではありません。ただ、プロジェクト管理という視点では、JIRAなどのプロジェクト管理ツールが用いられることが多いため、適切なプロジェクト運営が行われているかという視点でのプロセスマイニングは有効かもしれません。
全般管理とは、企業全体の戦略立案や遂行プロセスであり、これもかっちりとしたプロセスが定義できるような定型業務でないため、プロセスマイニング分析の対象とはなりにくい分野ではあります。
さて、企業内の各種プロセスの改善を目指したプロセスマイニングと並行して、今後大きく活用が増えると思われるのが、顧客の行動、特に購買行動プロセスを対象としたプロセスマイニングです。
すでに活用実績が積み重なりつつあるのが、Webサイト上での顧客の訪問履歴、すなわちページ閲覧行動についてのプロセスマイニングです。Webサイトでの顧客の訪問履歴は「アクセスログ」として詳細に記録されており、抽出してクリーニングを行えばすぐにプロセスマイニング分析が可能です。
また、リアルのショッピングモールやアウトレットでの来場客の回遊行動についてのプロセスマイニング分析も今後登場してくるでしょう。鍵を握るのは、モールやアウトレットの各所に設置されたIOTのセンサーです。IOTのセンサーが来場客の逐次の場所とタイムスタンプを記録したリアルなアクセスログを分析すれば、ファクトに基づく詳細な施設内回遊行動を明らかにできるのです。
このように、顧客の行動プロセスをプロセスマイニングで把握することは、「カスタマージャーニーマイニング」と呼ばれています。今後、最も進展が期待できる分野だと言えます。
テクノロジーとしてのプロセスマイニングの進化 from Process Mining 1.0 to 2.0
次に、テクノロジーとしてのプロセスマイニングが今後どのように進化していくのかについて簡単にご説明します。プロセスマイニングベンダーは現在、この進化の方向に向かってツールの機能拡張に取り組んでいます。
そもそも、プロセスマイニングとは、業務システムから抽出したイベントログデータに基づいて、現行業務プロセス(as isプロセス)を可視化し、非効率な手順やボトルネックなどを発見する「分析アプローチ」です。その目的は、業務プロセスの継続的改善にあります。多くの場合、大量のデータを扱うことから、ビッグデータ分析のひとつと言えます。またデータマイニングとも近い関係にあります。
さて、日々遂行される業務プロセスの継続的改善を目的としていることから、プロセスマイニングの分析アプローチは「記述的分析」を起点に、「処方的分析」に向けて進化を始めています。なお、これは、一般的なデータマイニングにおける分析アプローチの進化と軌を一にしています。
記述的分析 – Descriptive Analytics
記述的分析とは、ありのままの現状を把握することです。
イベントログから現行プロセスを「プロセスフローチャート」の形で見える化する機能、すなわち「プロセス発見(Process Discovery)」で得られるものであり、プロセスマイニング分析の最も基本的な機能です。(したがって、この機能がないものはプロセスマイニングツールとは呼べません)
診断的分析 – Diagnostic Analysis
診断的分析とは、記述的分析で得られた現行プロセスモデルにおける問題点(非効率やボトルネックなど)の要因分析を行うものです。
「なぜ、この箇所は想定より時間が掛かっていて非効率となっているのか」、「なぜ、ここで処理待ちが多く発生しているのか、すなわちボトルネックなのか」というなぜを追求します。「根本原因分析(Root Cause Analysis)」と呼ばれる深堀り分析です。
予測分析 – Predictive Analytics
予測分析では、現在仕掛中の未完了案件(Running Case)をリアルタイムに分析し、今後どうなりそうかを予測します。
記述的分析、診断的分析では、完了済、すなわち過去のイベントログデータを分析しますが、さらに、予測モデルを開発することで、未完了案件の未来の振る舞いを確率的に予測します。すなわち、次に起こりえる活動(Activity)はなんになる可能性が高いか、また、終了までの所要時間はあと何時間になりそうか、といったことを予測し、担当者に伝えます。
ある案件の今後の流れが好ましくない方向に行きそうである、またKPIの目標値よりも所要時間が長くなりすぎて約束納期を過ぎてしまう、といったことを事前に知ることができれば、適切な予防策を講じることが可能となります。
処方分析 – Prescriptive Analytics
処方分析は、単に今後のプロセスの振る舞いを予測するだけでなく、プロセス改善のために、どのような打ち手が望ましいかをアドバイスするものです。
医師が患者を診療して、熱やセキなどの症状を記述し、インフルエンザと診断、今後高熱がさらに続くと予測して、解熱剤を処方するように、業務プロセスの将来の悪化を予測したときに、どのような改善策を講じるかを提案する。これが処方分析です。
以上、説明してきた進化の4段階のうち、記述的分析と診断的分析は、多くのプロセスマイニングツールの機能として既に実装されています。また、ユーザーもこの2つの分析を活用していることから、「プロセスマイニング1.0」と言えるでしょう。機能としては、プロセス自動発見機能と関連する分析機能によって、根本原因分析を行います。
そして、予測的分析機能や、処方的分析機能を持つものは、「プロセスマイニング2.0」と呼ぶ先進的なプロセスマイニングツールです。一部のリーディングベンダーがこれらの機能へと拡張を始めているところです。