Introduction to Process Mining (4) What Process Mining can deliver
今回は、プロセスマイニングの活用がもたらす主な効用(ベネフィット)について解説します。
経営的インパクト
まずは、経営的な視点で考えてみましょう。すなわち、プロセスマイニングの活用が、経営上のゴールともいえる売上や利益の向上にどのように貢献できるか、ということについてです。
第一に、「コスト削減」の成果が期待できます。プロセスマイニングによって業務プロセスが可視化されることにより、ムダな業務を洗い出すことが可能です。ムダな業務とは、たとえば、そもそもやらなくても支障のない業務や、ミス多発により手戻りが発生しやすい業務などです。こうしたムダな業務を除去したり、ミスを減らせるような手立てを講ずることで、業務プロセスの遂行コストの削減が可能となります。
第二に、「顧客満足度向上」が期待できます。例えば、受注から納品までの「受注プロセス」の場合、プロセスマイニングによる問題点の把握と改善を行うことによって、納期の短縮が図れます。顧客にとって、注文したものが以前よりも早く届くようになれば満足度は高まります。また、業務プロセスが最適化されれば、納期短縮だけでなく、発注したものとは違うものが届くといったミスも減ることも期待できます。すなわち、プロセスのスピード、および質の向上によって顧客満足度の向上が可能となり、結果的に受注金額の増大やリピート率改善につながることになります。
第三に、「従業員満足度の向上」も期待できます。プロセスマイニングによってあぶりだされたムダな作業や業務の滞留、すなわちボトルネックが解消されれば、業務プロセス完了に費やされる労働時間が減り、不必要な残業がなくなって総労働時間の短縮が可能となります。徒労に感じられるような業務に時間を取られることなく、効率的に業務を遂行できるようになり士気も高まることでしょう。
プロセス改善の手がかり
前項では、最終的な売上・利益にどのようにプロセスマイニングが貢献できるかを解説しました。ここでは、プロセスマイニング分析の結果から、どのようなプロセス改善につなげることができるかを説明します。
プロセスマイニングツールにイベントログをアップロードし分析を行うことでまず「現状プロセス」が可視化されます。ここから様々な現状分析を行っていきます。可視化された現状のプロセス(as is プロセス)からは以下のような問題点が発見できるでしょう。
・非効率なプロセス(想定よりも処理時間が長い箇所)
・ボトルネック(仕事が滞留している箇所)
・スタッフスキルのばらつき(個々人の生産性の違い)
・手戻り(繰り返し)プロセス
これらの問題が発見できたら、「なぜこのような問題が発生してしまうのか」を掘り下げます。「根本原因分析」です。結果、原因が特定できたら、その原因を解消するための改善施策を検討し展開します。改善施策としては以下のような打ち手が考えられます。
・プロセス変革(ムダ業務の除去、手順の見直しなど)
・要員配置の最適化(シフトの見直し等)
・スキルアップトレーニング(生産性の差を均すため)
・RPA化(定型業務を中心とした自動化)
・BPO化(要因配置計画をより柔軟に行うため)
また、可視化された現状プロセスのバリエーションの中に、優れた手順を発見することができたら、それを「理想プロセス(ハッピープロセスとも言います)」とみなし、標準化を図ります。そして、マニュアルを作成したりBPMシステムのワークフローとして組み込むことで全社に展開することが有効な打ち手でしょう。
一方、すでに標準プロセスが存在していた場合、それをto beプロセスとしてプロセスマイニングツールにアップロードすれば、現状プロセスとの比較分析(「適合性検査」と呼びます)を行うことで、標準から逸脱しているプロセスをあぶりだすことができます。
この逸脱についても根本原因分析を行い、即時是正を行ったり、法令遵守、すなわちコンプライアンス上の問題に発展する可能性がある場合には、対象部署に対するコンプライアンス研修などを行い、逸脱発生を未然に防ぐ施策を打ちます。
このように、プロセス改善、プロセスの標準化に向けての適切な改善施策を検討する前段となる、プロセス上の様々な問題を簡単に発見できることが、プロセスマイニングの直接的な効用だと言えます。
なお、プロセスマイニングツールと業務プロセスを接続可能とし、リアルタイムにイベントログデータをツールに流し込むことで、完了した案件だけでなく、未完了案件のリアルタイム監視も可能です。
リアルタイム監視の場合、現在仕掛り案件についてボトルネックや逸脱の発生を探知できることから、ただちに改善措置を行うことが可能となります。ツールによっては問題の発生を事前に予測することもでき、未然に問題発生を阻止することさえ行えます。こうした機能は「運用サポート」と呼ばれ、近年ユーザーの評価がますます高まっている、プロセスマイニングのベネフィットだと言えます。
業務分析手法としての効用
プロセスマイニングは、業務プロセス改善やシステム改修を主な目的とする現状把握のための業務分析のひとつです。従来の業務分析は現場ヒアリングなどアナログな手法であったのに対し、業務システムから抽出されたイベントログデータを分析するデジタルな手法です。
これまで述べてきた便益に加えて、業務分析手法としてのプロセスマイニングは従来のアナログな手法と比較してのメリットもあります。
従来手法は前述したように、分析対象となる業務プロセスに関わっている関係者に個別ヒアリングを行ったり、一堂に会して議論するワークショップ、またストップウオッチを手にしての観察調査(動作調査)などアナログな方法です。
ヒアリングやワークショップの場合、関係者の発言がベースになることから、ありのままの現実というよりは主観的なものになります。また、記憶に頼ったものになるため、得られる情報は断片的です。
なにより、長大・複雑なプロセスの場合関係者も多数存在し、ヒアリングやワークショップにかかる時間とコストは膨大なものになります。観察調査は主観性はある程度排除できるもののの実施の負荷は大きく、また業務遂行の邪魔になる可能性もあります。
一方、プロセスマイニング分析は、業務システムから抽出したイベントログデータにもとづく定量分析です。システム上の操作履歴を基本的に丸ごと、全数で分析するため、客観的かつ、漏れのないエンド・ツー・エンドのプロセスを再現することが可能です。
プロセスマイニング分析自体は、現場担当者に大きな負担をかけることはありませんし、データクリーニングなどの前処理の手間を含めても、従来手法よりも大幅な期間圧縮、コストダウンが可能です。
ただし、注意点があります。プロセスマイニング分析の分析対象は業務システムで行われた業務のみであり、エクセルなどで行われた中間ファイル作成業務などは捕捉できません。プロセスマイニングは、エンド・ツー・エンドのプロセスを見える化できるとは言え、その粒度は現実の業務よりは粗いものになります。
したがって、プロセスマイニング分析から得られた現状プロセスをベースに、漏れているタスクレベルの業務はやはり現場担当者へのヒアリングやワークショップを補完的に行う必要があります。もちろん、従来手法のようにゼロベースでのヒアリングよりは、はるかに的確で効率的な情報収集が可能となりますので、業務分析にプロセスマイニングを採用することのメリットは総合的には非常に大きいと言えるでしょう。