RPD – Robotic Process Discovery – ロボティック・プロセス・ディスカバリとは?

What is RPD – Robotic Process Discovery?
English follows Japanese. Before proofread.

ロボティック・プロセス・ディスカバリ(以下、RPD)は、基本的には「タスクマイニング」と同義です。すなわち、ユーザーが自らのPC上で、エクセル、パワーポイントやブラウザーなどのアプリケーションやファイルを操作した履歴である「PC操作ログ」を収集し、分析対象とします。

「タスクマイニング」は、米ITアドバイザリ企業Gartnerが、『Gartner, Market Guide for Process Mining, Marc Kerremans, 17 Jun 2019』において初めて提唱した表現です。すでに、世界各国、また日本でも、「タスクマイニング」は、PC操作ログに基づく「業務可視化」のソリューション全般を含む一般名称として認知されつつあります。

一方、RPDは、2018年に、Marlon Dumas(Tartu大学教授)、Marcello La Rosa(Melbourne大学教授)らがPC操作ログ分析の研究を通じて、ひとつの方法論として提唱したものです。

タスクマイニングの場合、PC操作ログの分析という大きな枠組みを意味するだけですが、RPDでは、主に「RPAによるタスクの自動化」を目的とした、PC操作ログの基本的な分析手順が示されています。

以下、RPDではどのような手順でPC操作ログの分析を進めるのか、概要をご紹介します。原典は末尾に示しています。私の独自の理解で多少簡略化している点をあらかじめご了承ください。

なお、上記研究者たちは、最近、RPD(Robotic Process Discovery)ではなく、RPM(Robotic Process Mining)と呼び始めているようですが、当記事ではRPDでいきます。


1 PC操作ログの収集・蓄積

分析対象となるユーザーが使用する各PCにインストールされた「センサー(Javascriptの軽いプログラム)」が、ユーザーのアプリ起動、ファイルオープン、キーボードの押下、マウスのクリックなどの詳細なアクティビティを感知し、所定のサーバに送信、PC操作ログとして蓄積します。

なお、センサーが捕捉する詳細なアクティビティは、これ以上分解できない最小単位のものであるため、「アトミック・アクティビティ(原子的アクティビティ)」と言います。


2 データの抽出・ノイズフィルタリング

PC操作ログは、アトミック・アクティビティ(原子的アクティビティ)と呼ばれるように非常に詳細なものです。しかも、ユーザーの誤操作による修正アクティビティなど、分析対象とはなりえないノイズが大量に含まれています。

したがって、任意の条件(分析対象期間や分析対象PCなど)に基づいてPC操作ログデータを抽出したら、まずノイズを除去(フィルタリング)する作業を行う必要があります。また、同じアプリなのに記録されたデータ上の表記が若干異なっていると、異なるアプリとして処理されてしまうため、表記を統一したり、また文字化けを修正したりと、ノイズ除去以外に様々なデータ加工を行います。この作業は一般に「データ前処理(Data Preparetion)」と呼ばれています。


3 タスクセグメンテーション

RPDでの「セグメンテーション」は、PC操作ログの中から、なんらか一定の手順を踏んでいると想定されるひとまとまりのタスクを切り分けることを意味します。例えば、「ブラウザー画面に表示されている情報をコピーして、エクセルファイルにペーストする」、といった、なんらかの目的遂行のために連続したタスク、いわゆる「定型業務に関わるタスク」を抽出する作業がセグメンテーションです。

あらかじめ業務手順が作り込まれた業務システム(調達システムなど)と異なり、PC操作はユーザーの自由度が高く、PC操作ログはぱっと見、きままに様々なアプリやファイルを移動しているだけに見え、業務手順がはっきりしません。

そこで、ひとまとまりのタスクに関わるデータにのみをPC操作ログから切り出す、すなわち「タスクセグメンテーション」を行う必要があるわけです。


4 タスクシンプリフィケーション

セグメンテーションによって抽出された、データ転記のようなタスクにもまだ多少のノイズが含まれています。多くはユーザーの誤操作や、他のアプリでの並行操作などによるものですが、これらのノイズを除去してあげると、PC操作単位での手順が明確に把握できます。前述の例ですと次のような明確な手順がわかるフローが明らかになります。

エクセルファイルオープン(エクセル)⇒データ表示画面アクセス(ブラウザ)⇒データコピー(ブラウザ)⇒ペースト(エクセル)⇒データ表示画面アクセス(ブラウザ)⇒データコピー(ブラウザ)⇒ペースト(エクセル)・・・・

このように手順が明確に把握できるようにする仕上げ作業を「タスクシンプリフィケーション」と呼びます。


5 自動化候補タスク特定

分析対象としたPC操作ログデータからは、タスクセグメンテーションによって複数のタスクが切り出され、またタスクシンプリフィケーションによって、それぞれのタスクの流れを明確に把握することができました。

そこで、次には、これらのタスクのうち、どのタスクがRPAによる自動化に適しているか、また相応の効果を出せそうかを検討します。この段階では、候補タスクを実際に行っている現場の担当者にも詳しくヒアリングすることが望ましいでしょう。(現実には、タスクセグメンテーション、タスクシンプリフィケーションの段階でも、現場担当者の協力が得られると迅速に行うことができます)


6 自動化可能な手順発見

ここは、RPAによる自動化の範囲を決定する段階になります。前項で自動化に向いていると判明したタスクは、必ずしも初めから終わりまですべて自動化できるとは限りません。

そこで、さらに、自動化可能な手順を絞り込んでいきます。たとえば、前項で特定した自動化候補タスクの手順が、[A⇒B⇒C⇒D⇒E⇒F]だったとして、自動化するのは、[C⇒D⇒E⇒F]のみ(A⇒Bは現行のまま)、というような形での絞り込みになります。


7 自動化手順の仕様作成

自動化可能な手順が絞り込めたら、任意のRPAツールでタスクを自動実行させるための要求仕様を検討し、次項のプログラミングのための「基本設計書」を作成します。


8 RPAプログラミング

ここはRPAツール上での作業です。実際の自動化手順を組んでいきます。実際の環境でテストし、問題なく動くことが検証できたらRPAロボットの稼働開始です。

RPD – Robotic Process Discoveryの基本フロー

Basic flow of Robotic Process Discovery

以上、言葉で説明するだけではなかなかイメージが湧かないかもしれませんが、RPDのおおまかな手順をご説明いたしました。

RPDにせよ、タスクマイニングにせよ、個々のユーザーのPC操作単位での業務可視化を通じ、生産性向上を主な目的として、各種改善施策を展開することが主眼。具体的な改善施策は様々ですが、RPDは、特に、「タスク自動化」を基本目的とした分析手法であることをご理解いただければと思います。

また、RPD、またはタスクマイニングは、複数の部門をまたがる業務プロセスを可視化する「プロセスマイニング」と組み合わせて活用するときに最大の効果を発揮する点を強調しておきます。

[参考文献]

Robotic Process Mining: Vision and Challenges
Volodymyr Leno, Artem Polyvyanyy, Marlon Dumas, Marcello La
Rosa, Fabrizio Maria Maggi

Discovering Automatable Routines From User Interaction Logs
Antonio Bosco, Adriano Augusto, Marlon Dumas, Marcello La Rosa, and
Giancarlo Fortino

AI for Business Process Management From Process Mining to Automated Process Improvement
Marlon Dumas, University of Tartu Institute of Computer Science


What is RPD – Robotic Process Discovery?

Robotic Process Discovery (RPD) is essentially synonymous with “task mining”. That is, it collects and analyzes PC interaction Log, which is the history of the user’s operation of applications and files such as Excel, PowerPoint, and browsers on his or her own PC.

“Task mining” is an expression first proposed by US IT advisory firm Gartner in its report, “Gartner, Market Guide for Process Mining, Marc Kerremans, 17 Jun 2019”. The term “task mining” is already gaining fairly high recognition around the world and in Japan as a general name that includes all solutions for “business visualization” based on PC interaction logs.

“RPD”, on the other hand, is a methodology proposed by Marlon Dumas (Professor at Tartu University) and Marcello La Rosa (Professor at Melbourne University) in 2018 through their research on PC interaction log analysis.

In the case of task mining, it only connotes the big framework of PC interaction log analysis, but RPD shows the basic analysis procedure of PC interaction log mainly for the purpose of “automation of tasks by RPA”.

The following is an overview of how RPD proceeds to analyze the PC interaction log. The references are shown at the end.

Please note that this is a simplified version based on my original understanding. And it should also be noted that the above researchers have recently started to call it RPM (Robotic Process Mining) instead of RPD (Robotic Process Discovery), but I will use RPD in this article.

1 Collection and storage of PC interaction logs

The sensor (a light Javascript program) installed on each PC used by the user to be analyzed detects the user’s detailed activities such as launching applications, opening files, pressing the keyboard, clicking the mouse, etc., and sends the data to a designated server, where it is stored as a PC operation log.

The detailed activity captured by the sensor is called “atomic activity” because it is the smallest unit that cannot be decomposed any further.

2 Data Extraction and Noise Filtering

PC operation logs are very detailed, so called atomic activity. What’s more, there’s a lot of noise in there that can’t be analyzed, such as modified activities due to user error.

Therefore, after extracting PC interaction log data based on some conditions (target period, target PC, etc.), it is necessary to remove (filter) the noise first. In addition, if the notation on the recorded data is slightly different even though it is the same application, it will be processed as a different application, so we can unify the notation, correct garbled characters, and perform various data processing other than noise removal. This work is commonly referred to as “Data Preparation”.

3 Task Segmentation

In RPD, “segmentation” means to isolate a group of tasks from the PC operation log that are assumed to have followed a certain procedure. For example, “Copying and pasting information displayed on the browser screen into an Excel file” is a task to extract a series of tasks to accomplish some purpose, so-called “routine tasks”.

Unlike business systems (e.g., procurement systems) with pre-built business procedures, PC operation has a high degree of freedom for the user, and at a glance, PC operation logs look like they are just moving various applications and files at will, and business procedures are not clear.

Therefore, it is necessary to perform “task segmentation”, that is, to isolate only the data related to a single task from the PC operation log.

4 Task Simplification

The tasks extracted by the segmentation, such as data transcription, still contain some noise. Many of them are caused by user mistakes or parallel operation in other applications, but if you remove these noises, you can clearly understand the steps in each PC operation. The aforementioned example reveals a flow that reveals the following clear steps

Excel File Open (Excel) ⇒ Data Display Screen Access (Browser) ⇒ Data Copy (Browser) ⇒ Paste (Excel) ⇒ Data Display Screen Access (Browser) ⇒ Data Copy (Browser) ⇒ Paste (Excel)…

The finishing touches that make it possible to understand the procedure clearly are called “task simplification”.

5 Identification of candidate tasks which can be automated

From the PC interaction log data extracted for analysis, we were able to isolate multiple tasks through task segmentation and clearly understand the flow of each task through task simplification.

The next step is to consider which of these tasks are suitable for RPA automation and whether they are likely to produce a reasonable effect. At this stage, it is advisable to interview the person in charge in the field who is actually performing the candidate task in detail. (In reality, even the task segmentation and task-simplification stages can be done quickly with the help of field personnel.)

6 Automatable procedure discovery

This is the stage where the scope of automation with RPA is determined. The tasks identified in the previous section as being better suited for automation are not necessarily all automatable from beginning to end.

So, we will further narrow down the steps that can be automated. For example, if the procedure of the automation candidate task identified in the previous section is [A ⇒ B ⇒ C ⇒ D ⇒ E ⇒ F], then only [C ⇒ D ⇒ E ⇒ F] is to be automated (A ⇒ B remains the current one).

7 Create specifications for automation procedures

Once you have narrowed down the steps that can be automated, consider the requirements for the automatic execution of the task by any RPA tool and create a “basic design document” for the programming in the next section.

8 RPA programming

This is to be done on an RPA tool writing an actual automation procedure. After testing in the actual environment and verifying that it works without any problems, the RPA robot is ready to go live.


Although it may not be easy to get an image of the RPD just by explaining it in words, I have explained the general procedure of RPD.

Whateve you call it, RPD, RPM or task mining, the main focus is to develop various improvement measures with the main objective of improving productivity through visualization of operations at each PC. There are a variety of specific improvement measures, but we hope you understand that RPD is an analysis method with the basic purpose of “task automation” in particular.

It should also be emphasized that RPD, or task mining, is most effective when combined with “process mining”, which visualizes business processes across multiple departments.

[References]

Robotic Process Mining: Vision and Challenges
Volodymyr Leno, Artem Polyvyanyy, Marlon Dumas, Marcello La
Rosa, Fabrizio Maria Maggi

Discovering Automatable Routines From User Interaction Logs
Antonio Bosco, Adriano Augusto, Marlon Dumas, Marcello La Rosa, and
Giancarlo Fortino

AI for Business Process Management From Process Mining to Automated Process Improvement
Marlon Dumas, University of Tartu Institute of Computer Science