DXに必須!プロセスマイニング活用入門

processmining in practice cover

Process Mining in Practice – Business Process Improvement with fact-based process discovery and BPM perspective

日本人による初めてのプロセスマイニング書籍、『DXに必須 プロセスマイニング活用入門:ファクトベースの業務改善を実現する』を2021年5月に発行します。

本書では、ビジネス分析のためのソリューションである「プロセスマイニング」の基本を踏まえつつ、データ分析に基づく業務プロセス改善の具体的な取り組みについて、BPM(Business Process Management)の視点で詳しく解説しています。

デジタルトランスフォーメーション(DX)に取り組んでいる方、業務プロセスの根本的改革のためのBPRに取り組んでいる方、また継続的な日々のプロセス改善に取り組んでいる方にとって必携の書です。

ぜひ、お読みください。

本書についてのより詳細な情報は特設ページへ⇒

プロセスマイニングとは – What is process mining?

「プロセスマイニング」は、主に業務プロセスの「見える化」を行う分析手法です。分析対象としては、業務遂行に用いられる様々なシステム、具体的にはERPやCRM、SFA等の操作内容を詳細に記録したデータ、すなわち「イベントログ」を用います。

プロセスマイニングを行う主な目的は、プロセスに関わる様々な問題を発見することです。例えば価値を生まない無駄な手順や、非効率な活動、業務の滞留が発生しているボトルネックなどを特定し、是正することで、プロセスを開始してから完了するまでの所要時間を短縮、あるいは、プロセスに係るコスト削減を狙います。

プロセスマイニングを病気の治療にたとえるなら、改善すべき問題プロセスは、CoE(Center of Excellence)と呼ばれるプロセス改善のための専門病院に入院させます。そして、まずは治療対象プロセスの概要を把握するための問診を行います。

次に、X-ray(レントゲン)は、レントゲン写真や、CT検査としてのプロセスマイニングにより、業務プロセスを「見える化」します。見える化、すなわち業務プロセスを表すフローチャートを見ながら、非効率、ボトルネック、逸脱などの病巣を特定。

さらに詳細に病巣を検査したければ、PC操作ログを収集、分析するタスクマイニングを実行します。タスクマイニングは、内視鏡のようなものです。

病巣が特定され、また根本原因が判明したら、適切な治療方針・処方を行い、手術(改善施策)に着手します。無事、病巣、すなわち問題箇所が解消され、対象プロセスが最適化されたら、予後の経過を見るために定期検診=継続的モニタリングを行い、再発防止に努めるのです。

プロセスマイニングベンダー最新評価レポート2021 – Everest Group PEAK Matrix(R) 2021

evelest

Process Mining Products PEAK Matrix(R) Asessment 2021

ダラスに本社を置くコンサルティング&調査会社のEverest Groupは、2021年6月4日、主要なプロセスマイニングベンダー18社について、以下の2つの軸での市場ポジショニング(山脈に見立てているので「PEAK Matrix」)を発表しました。

プロセスマイニングについてのEverest Peak Matrixは、2020年版につづいて2年目です。

⇒2020年版はこちらから

横軸:Vision & Ability – Measures ability to deliver products successfully
製品開発ビジョンを示し、それに沿った製品を成功裡に提供できる能力

縦軸:Market Impact – Measures impact created in the market
市場に与えるインパクトの強さ

PEAK Matrixでは、競合製品をLeaders(リーダー)、Major Contenders(主要な競争相手)、Aspirant(上を狙う野望を持つ製品)の3つにカテゴライズします。Process Mining市場では、それぞれのカテゴリーに含まれる製品は次の通りです。

Leaders

  • Celonis
  • Software AG
  • Minit
  • UiPath

Major Contenders(アルファベット順)

  • Apromore
  • Everflow
  • LANA Labs
  • Logpickr
  • MEHRWERK GmbH
  • Monkey Mining
  • myInvenio
  • PAF now
  • QPR Software
  • UpFlux
  • Signavio

Aspirants

  • Integris
  • LiveJourney
  • Live Objects

→Matrix図はこちら

2020年版からの主な変化としては、リーダーグループでは、MinitがMajor Contendersから昇格したことが挙げられます。結果、Leadersに位置付けられたベンダーは4社となりました。

Major Contenders、すなわちリーダーグループに闘いを挑んでいる主要な競争ベンダーについては、前回は8社でしたが、今回は11社と増え、さらに競争が激化しています。まだあまり知名度の高くないMonky Miningや、Upfluxが登場。

また、このところ急速に機能を拡張してきたApromoreが前回よりも高い位置まで登っています。

Aspirantsとしても、新興ベンダーと思われますが、Livejourney、Integris、Live Objectsの3社が登場しました。

なお、日本で本格展開しているプロセスマイニングツールは、Celonis、Uipath、myInvenio、Signavio、ABBYY Timelineの5社です。(ABBYY Timelineが、今回のPeak Matrixから除外された理由は今のところ不明)

レポート詳細は以下から入手可能です。(有料)

Process Mining – Technology Vendor Landscape with Products PEAK Matrix(R) Assessment 2021


プロセスマイニングツール選定のための参照マトリックス

ReferenceMatrix_for_PMtool_Selection_ja

Reference Matrix for Process Mining Tool Selection

English follows Japanese. Before proofread.

プロセスマイニングは近年、DX推進・定着に役立つソリューションとしての認知・理解がさらに進みました。また、先のIBMによるmyInvenioの買収や、SAPによるSignavioの買収が示すように、プロセスマイニングが、大手IT企業のソリューションに組み込まれることで、企業のITシステム開発・運営に欠かせない構成要素として重要性が高まっていくことは間違いありません。

さて、企業が、プロセスマイニングを活用したビジネスプロセス改善やシステム改修・開発に取り組むに当たって、言うまでもなく、プロセスマイニングツールの採用が必須であり、自社にとって最適なツールの選定は成功の大きなカギを握っています。

今回は、自社では、プロセスマイニングツールのどのような機能が特に必要となるのかを判断する助けとなるマトリックスを解説いたします。


マトリックスの横軸:時間

分岐対象は、時間と言う視点では、過去の完了したプロセスなのか、それとも現時点で処理中のプロセスなのか、それともこれから遂行されるであろう未来のプロセスなのか、ということです。

一般に、データ分析は完了した過去データを対象に行います。プロセスマイニング分析においても同様で、完了したイベントログデータをプロセスマイニングツールで分析することで、現状プロセスを自動的にモデル化し、様々な視点での分析(基本分析)を行います。

例えば以下のような基本分析があります。

・頻度分析

・パフォーマンス分析(所要時間やコストの視点での分析)

・バリアント分析

・適合性検査(現状プロセスと理想プロセスの比較分析) 

など。

プロセスマイニングツールの進化系では、現在進行中のイベントログデータをリアルタイムに近い頻度でプロセスマイニングツールに取り込んで、リアルタイム監視を行い、逸脱などの問題を探知すれば、関係者にアラートを出すという機能を備えています。

これから行われるであろう未来のプロセスについては、以下のような機能が対応します。

・シミュレーション(What-IF)

現状のプロセスをなんらか改善した場合に、どれだけの改善効果(スループット短縮やコスト削減など)が得られるのか、シミュレーションを実行する。

・モデリング

実装すべき理想プロセスの流れをBPMN形式でモデル化する。

・予 測

仕掛中案件が、今後どのような手順で処理されていくことになるのか、所要時間がどの程度になるのか、といった予測をAIなどを活用して行う。

・レコメンデーション

上記予測結果を踏まえて、問題発生や処理時間の長期化を未然に防ぐための最善の打ち手を提案する。

・自動的なプロセス改善(AutoPI:Automated Process Improvement)

プロセス改善のための打ち手を一定の条件において、プロセスマイニングツールが自動的に実行し、迅速な対応を実現する。


マトリックスの縦軸:ビジネス層 

ビジネス層とは、プロセスの視点でより詳細な構成要素に因数分解していくものです。管理的には、上位にあるほど「戦略的」であり、下層にむかって「戦術的」、そして「業務的(日々の現場管理)」な視点が必要となります。

最上部は、ビジネスモデルです。そこから、企業全体のプロセスをEnd-to-Endで把握するバリューチェーン、バリューチェーンを構成する個々のプロセスと粒度が細かくなっていきます。

どのようなビジネスプロセスであれ、それはいくつかのサブプロセスに分解できます。さらにひとつのサブプロセスは、より細かいタスクで構成され、そのタスクは複数のアクティビティで構成されています。

たとえば、経理部門での「請求書処理」というサブプロセスを考えると、これは「請求書を受領する」、「請求書の内容を確認する」、「請求書を経理システムに登録する」、登録した請求書に対する支払処理を行う」といったアクティビティが含まれます。

これらのアクティビティのうち、「請求書を受領する」の場合、「PDF請求書添付のメールを開封する」、「添付されたPDF請求書をダウンロードする」といった一つひとつのタスクステップが実行されていくことになります。

さらにこうしたタスクステップは、PCの操作単位では、メールソフトアイコンをクリック、メール開封をクリック、添付ファイルをクリックといった最小単位のアクティビティが実行されており、これらはこれ以上分解できないアクティビティであることから「原子アクティビティ」と呼ばれます。

プロセスマイニングが分析対象とするのは、基本的には、プロセス層からアクティビティ層(場合によってはタスクステップ層)です。ITシステム内に記録されているトランザクションデータは多くの場合、比較的粒度の粗いアクティビティレベルであるという分析対象データそのものの制約があります。

そこで、より粒度の細かいタスクステップ、原子アクティビティまでの分析を行うために活用されるのがタスクマイニングです。タスクマイニングはまだ誕生したばかりの分析手法であり、BI的な集計以上の深い分析方法についてはまだ試行錯誤の段階ではありますが、プロセスマイニングと併せて活用することで、特にRPAによるプロセス自動化に貢献します。


さて、貴社のビジネスプロセス課題と照らして、分析対象とすべきなのは、過去、現在、未来のどれでしょうか?また、ビジネス層としては、どの粒度のプロセスでしょうか?

ツールベンダーのご担当の方とは、一緒にこのマトリックスを見ながら、自社はどこに問題意識を持っているのかを認識しつつ、これらの機能をどの程度実装できているかを把握していきましょう。

なお、マトリックスには記載しておりますが、プロセスマイニングの対象とはならない、ビジネスモデル層については、ビジネスモデルキャンバス(BMG:Business Model Canvas)、プロセスモデルキャンバス(PMG:Process Model Canvas)といったツールが活用できます。


Reference Matrix for Process Mining Tool Selection

In recent years, process mining has been further recognized and understood as a useful solution for promoting and establishing DX. In addition, as shown by the recent acquisition of myInvenio by IBM and Signavio by SAP, there is no doubt that process mining will become increasingly important as an indispensable component of corporate IT system development and operation as it is incorporated into the solutions of major IT companies.

Needless to say, the adoption of process mining tools is essential for companies to improve their business processes and to renovate and develop their systems using process mining, and the selection of the best suited tool for your company is a major key to success.

In this article, I will explain a matrix that will help you determine what functions of process mining tools are particularly necessary for your company.

Horizontal axis of the matrix: Time

From the perspective of time, there are three dimensions which are completed processes in the past, processes in progress at the moment, and future processes to be executed in the future.

In general, data analysis is done on completed historical data. The same is true for process mining analysis. By analyzing completed event log data with process mining tools, we can automatically model current processes and analyze them from various perspectives (basic analysis).

For example, the following basic analysis is available.

  • Frequency analysis
  • Performance analysis (analysis from the perspective of time required and cost)
  • Variant analysis
  • Conformance checking (comparative analysis of current process and ideal process) 

etc.

There are some process mining tools which can do continuous monitoring and if problems such as deviations are detected, alerts are sent to the relevant parties by importing ongoing event log data to the process mining tool at a frequency close to real time.

For future processes that will take place in the future, the following functions will be supported.

Simulation (What-IF Analysis)

Simulate how much improvement (throughput reduction and cost reduction, etc.) can be obtained if the current process is improved in some way.

Modeling

Model the flow of the ideal process to be implemented in BPMN format.

Forecasting

predict how in-process projects will be processed in the future and how much time will be required by using AI.

Recommendations

Based on the results of the above predictions, the tool proposes the best measures to prevent problems from occurring and prolonging the processing time.

Automated Process Improvement (AutoPI)

A process mining tool automatically executes measures for process improvement under certain conditions to achieve a quick remedy.

●Vertical axis of the matrix: Business layer 

The business layer is a factorization into more detailed components from a process perspective. Administratively, the higher the layer, the more “strategic” it is, and the lower the layer, the more “tactical” it is, and the more “operational” (day-to-day on-site management) it needs to be.

At the top is the business model. From there, the granularity becomes finer, including the value chain that grasps the processes of the entire company from end-to-end, and the individual processes that make up the value chain.

Any business process can be broken down into a number of sub-processes. One more sub-process is composed of finer-grained tasks, and those tasks are composed of multiple activities.

For example, if we consider a sub-process called “invoice processing” in the accounting department, this includes activities such as “receiving invoices,” “checking the contents of invoices,” “registering invoices in the accounting system,” and “processing payments for registered invoices.

Among these activities, in the case of “receive invoice,” each task step is executed one by one, such as “open the email with the PDF invoice attached” and “download the attached PDF invoice.

In addition, these task steps are executed in the smallest units of PC operations, such as clicking on the mail software icon, clicking on open mail, and clicking on the attachment. These are called “atomic activities” because they cannot be decomposed any further.

Process mining basically analyzes the activity layer (or task step layer, as the case may be) from the process layer. transactional data recorded in IT systems are often at the activity level, which is relatively coarse-grained. In many cases, transaction data recorded in IT systems is at a relatively coarse activity level.

Therefore, task mining is used to analyze task steps and atomic activities with finer granularity. Task mining is still in its infancy, and it is still at the stage of trial and error for deeper analysis besides BI-like aggregation. However, by using it together with process mining, it can contribute to process automation, especially with RPA.

Now, in light of your company’s business process issues, which should be the target of analysis: past, present, or future? Also, at what granularity should the process be analyzed as a business layer?

With the person in charge of the tool vendor, let’s look at this matrix together to understand the extent to which these functions can be implemented while recognizing where the company is aware of the issues.

For the business model layer, which is not subject to process mining, tools such as Business Model Canvas (BMG) and Process Model Canvas (PMG) can be used.

ReferenceMatrix_for_PMtool_Selection_en

【速報】SPARK Matrix(TM): Digital Twin of an Organization (DTO) Solution, 2021 – Quadrant Knowledge Solutions

SPARK Matrix(TM): Digital Twin of an Organization (DTO) Solution, 2021

米国の経営コンサルティング会社、Quadrant Knowledge Solution社の市場調査レポート、「SPARK Matrix(TM): Digital Twin of an Organization (DTO) Solution, 2021」が2021年3月3日に公開されました。

Digital Twin of an Organization (DTO) とは?

Digital Twin of an Organization (DTO)は、一般に、「DTO」、または短く「デジタルツイン」と称されます。DTOは、現実のアナログな企業の形態にそっくりな、デジタルの双子の片割れ、言い換えると「レプリカ(複製)」のことです。

DTOは、より具体的には企業の業務プロセスや、組織体制、システム構成などをデジタルデータに基づいてモデル化し、ディスプレイ上で可視化したものです。企業は、DTOを通じて現状を把握し、問題点を発見し、シミュレーションを行うなどして、最適な改善施策を練り、実行に移すことが可能になります。またDTOによるモニタリング(監視)によって、継続的な改善を行うことができます。

SPARK Matrix(TM):Digital Twin of an Organization (DTO) Solution

今回発表されたSPARK Matrixでは、DTOを実現する各種商用ソリューションを比較分析しています。検討対象となったソリューションは合計16種です。SPARK Matrixでは、これらを以下の3つのカテゴリーに分類しています。

・Technology Leader

・Challengers

・Aspirants

そして、Technology Leaderに含まれるソリューション(ベンダー)は、以下の8種となっています。

・Software AG

・Signavio

・Celonis

・myInvenio

・CANEA

・Cosmo Tech

・QualiWare

・QPR Software

なお、上記ベンダーのうち、Software AG、Signavio、Celonis、myInvenio、QPR Softwareは、プロセスマイニングソリューションの代表的なベンダーでもあります。

プロセスマイニングは、DTOを実現する上で不可欠の機能(次項参照)を提供していることから、DTO市場においても高い存在感を示すのは当然でしょう。

DTOを実現する主要機能

当レポートでは、DTOを実現する主要機能として以下を示しています。

・包括的なデータマネジメント – Comprehensive Data Management

・プロセスのモデリングとビジュアル化 – Process Modeling and Visualization

・シミュレーション – Simulation

・高度な分析 – Advanced Analytics

・リアルタイムモニタリング – Real-Time Monitoring

・継続的なフィードバックと改善 – Continuous Feedback and Improvement

・各種システムとの統合と協調 – Integration and Collaboration

オリジナルレポートはこちらから

【速報】プロセスマイニングトレンド2021 – HSPI Process Mining: A Database of Applications 2021

Process Mining trend – Global 2005-2021 by HSPI Process Mining: A Database of Applications 2021

イタリアのITコンサルティングファーム、HSPIが2018年から毎年発行しているプロセスマイニング事例集の2021年版、「Process Mining: A Database of Applications 2021」が2021年1月27日に公開されました。

詳細はオリジナルのレポートをご覧いただくとして、当記事は全体概要としての統計的集計結果をご紹介します。なお、このレポートはプロセスマイニング導入に関わるコンサルティング会社やプロセスマイニングツールのベンダー企業などに案件情報提供を依頼した結果であり、市場全体を代表するものではありません。

プロセスマイニングプロジェクト件数年別推移

年別のプロセスマイニングプロジェクトの実施件数推移を見ます。2019年に報告件数が減少しましたが、2020年は100件を超え、導入企業が着実に増加していることがうかがえます。

case distribution per year 2005-2020

国別プロジェクト件数(構成比)

次に、過去の全案件について国別のプロジェクト件数の構成比を見ます。

プロセスマイニングは1999年にオランダで誕生し、ヨーロッパ各国で研究、および活用がすすんできたこともあり、ヨーロッパが全体の約半数を占めています。

次いで、米国、韓国、オーストラリアと続いています。

米国でのプロセスマイニング普及は日本とほぼ同時期の2018年ころからですが、良いものには躊躇せず飛び付く米企業らしく、急速に普及が進んでいることが推測できます。

韓国では、韓国企業、Puzzle Dataが独自開発したプロセスマイニングツールが市場をほぼ独占しており、積極的にマーケティング&セールス活動を行っていることから、普及が進んでいるようです。

オーストラリアでは、クィーンズランド大学はじめ、プロセスマイニング研究が盛んで、近年はオープンソースツール、Apromoreが商用サービスを開始したことを背景に着実に導入が進んでいます。

日本の案件は最新版でも含まれていませんが、おそらく2020年だけで数十社がPoC、または本格導入したと推測され、仮に本調査に協力したとしたら上位に位置してくるのは間違いないでしょう。


産業別プロジェクト件数(構成比)

産業別にみてプロセスマイニング導入が多いところはどこでしょうか。

以下の円グラフでおわかりのように、「Industrals」が22%と最も多く、次いでFinancialsが17%、「Healthcare」15%、「Telecommunications」10%と続いています。

「Industrials」には、Aerospace & Defence, Automotive & Parts, Construction & Materials, Electronics, General Industrials, Industrial Engineering , Logisticなどの業種が含まれていますが、大規模組織で、複雑なプロセスを抱える企業のプロセスマイニング導入が進んでいることがうかがえます。

case distribution by industry

オリジナルレポートはこちらから

Process Mining in 2021 and Beyond – Marlon Dumas

process mining in 2021 and beyond

当記事は、Tartu大学教授、Marlon Dumas氏の掲載許諾を得て日本語に翻訳したものです。日本語での理解がしやすいよう、多少補足・意訳している箇所があります。日本語版の文責はすべて松尾にあります。

Marlon Dumas氏は、BPM(Business Process Management)、Process Miningの研究者として世界的に著名です。オープンソースのプロセスマイニングツール、「Apromore(アプロモーレ)」を開発販売するApromore Pty Ltdの共同創業者でもあります。

また、世界の多数の大学において、BPMの教科書に採用されている『Fundamentals of Business Process Management』の共著者です。なお、『Fundamentals of Business Process Management』の日本語版が2021年中に刊行予定です。


Process Mining in 2021 and Beyond

– Marlon Dumas, Professor at University of Tartu | Co-founder at Apromore

過去10年間で、プロセスマイニングはビジネスプロセスを分析し、改善するための主流のアプローチとなりました。何百ものケーススタディが文書化され、また数千もの成功事例があり、プロセスマイニングは今やBPM(ビジネスプロセス管理)分野の不可欠な一部となっています。

同時に、プロセスマイニングはダイナミックで急速に進化している分野であり、今後もさらなる進化が期待されています。過去10年間は、可視化とダッシュボード(自動プロセス発見、パフォーマンスダッシュボード、アニメーション)に重点が置かれてきました。今後数年間のうちに、プロセスマイニングは、AIベースのプロセス最適化の領域へと進化していくでしょう。

私は、2021年には5つのトレンドが到来すると考えています。


トレンド1. ロボティック・プロセスマイニング


ロボティック・プロセス・マイニングは、デジタル・ワーカーが日常業務で行う反復的な定型作業を発見することに焦点を当てたプロセス・マイニングの新しいサブフィールドです。

定型業務の例としては、1つまたは複数のドキュメントからのデータをオンラインフォームに入力したり、電子メールの添付ファイルから内部情報システムにデータをコピーしたりすることが挙げられます。

ロボティックプロセスマイニングの出発点はUI(ユーザーインタラクション)ログ(日本では「PC操作ログ」とも言う)です。業務従事者と様々なアプリケーションや情報システムとの間のユーザーのインタラクション(操作)を記録したものです。

ロボティック・プロセス・マイニング・ツールは、複数の作業者が一定期間にわたって生成したUIログを分析し、頻繁に繰り返された手順の流れ(シーケンス)を発見します。これらは「デジタル作業ルーチン」と呼ばれています。各ルーチンは分析され、例えばRPA(Robotic Process Automation)のボットや、アプリケーションオーケストレーションスクリプトを介して自動化できるかどうかを判断します。

ロボット・プロセス・マイニングの究極の目的は、作業者を付加価値のないルーチンから解放し、顧客にとって重要なことに集中できるようにすることです。このアニメーションは、ロボットプロセスマイニングのゴールを簡潔に説明しています。


トレンド2.  Causal(因果)プロセスマイニング


因果プロセスマイニングは、ビジネスプロセスの実行ログから因果関係を発見し、それを定量的に把握しようとするプロセスマイニングの新たなサブフィールドです。

このような因果関係は、プロセス管理者がビジネスプロセスの改善機会を特定するのに役立つかもしれません。例えば、注文から現金化までのプロセス(O2C)のイベントログに対するプロセスマイニング分析結果から、顧客が東南アジア出身の場合、アクティビティAをワーカーXに割り当てるか、あるいは、アクティビティBの前にアクティビティAを実行すると(その逆ではなく)、この顧客が満足する確率が10%上がる、といった因果関係を発見することができます。

因果プロセスマイニングの目的は、特定のパフォーマンス指標の点で違いをもたらす介入*を特定することです。因果プロセスマイニングの詳細については、こちらの記事をお読みください。

*介入とは、プロセスのパフォーマンスを向上させるために行う具体的な対応策を意味している。因果関係を明確にすることにより、どんな介入が効果的であるかを特定することができる(松尾注)


トレンド3.  What-if(もしも)プロセスマイニング


What-if(もしも)プロセスマイニングは、イベントログを使用して、ビジネスプロセスに対する1つ以上の変更が与える影響を理解するための方法です。

従来のプロセスマイニング手法は、「現在のプロセスのボトルネックは何か」、「現在のムダの発生源はどこか」、「リワーク(繰り返し業務)のループはどこか」などの「現状」分析の質問に焦点を当てています。

対照的に、What-ifプロセスマイニングでは、次のような質問に対応します。「来月、顧客からの注文数が2倍になったらどうなるだろうか」、「Covidの影響で、従業員(の生産性)が10%が遅くなったらどうなるだろうか」、「あるタスクを90%自動化すると、待ち時間や処理費用がどれくらい削減されるだろうか」などです。

What-ifプロセスマイニングの要となるのは、データドリブンのプロセスシミュレーションです。すなわち、実行データに基づいて、再現度の高いプロセスシミュレーションモデルを自動的に発見する機能です。従来、プロセスシミュレーションは、確率分布や統計解析に関する高度な専門知識を必要とし、非常に時間のかかる作業でした。

データドリブンのシミュレーションは、シミュレーションモデルを自動的に発見、調整、検証することで、この作業を自動化し、観測されたプロセスを忠実に再現することを可能にします。ここ数年は、イベントログからBPMNのシミュレーションモデルを検出するオープンソースのツールセット「Simod」をはじめとするデータドリブンのシミュレーションツールが登場しています。2021年に向けて、この分野ではさらに多くの開発が行われることでしょう。


トレンド4.  処方的プロセスモニタリング


プロセスマイニングに使用するものと同じイベントログは、以下のようなプロセスの結果を予測するための「機械学習モデル」を訓練することにも使用できます。

・実行中のプロセスインスタンスは時間通りに完了するのか、それとも遅れるのか

・顧客は注文を受けて満足するのか、製品を返品するのか

・サプライヤーは請求書を時間通りに支払うのか、それとも多少の遅延があるのか

予測プロセスダッシュボードを生成するツールはいくつかありますが、その中にはNirdizatiのようなオープンソースのツールも含まれています。このような予測には、間違いなく多くの潜在的なビジネス価値があります。これらのツールを使うことで、運用管理者や業務従事者は問題の発生を確認し、予防措置を取ることが可能になります。

ただし、現実には、予測監視ダッシュボードだけではほとんど役に立ちません。確かに、未完了の注文の10%が、遅延や不良品、製品間違いなど、何らかの形で顧客からのクレームにつながる可能性はわかります。しかしながら、それは私たちがそれについて、「いつ何をすべきか」を教えてくれません。すなわち、そうした問題を防ぐために、ビジネス価値を最大化しつつ、リソースをどのように配分すべきなのか?予測に基づいていつ行動すべきか?を教えてくれるわけではないのです。

処方的プロセスモニタリングは、プロセスのパフォーマンス指標を最適化する施策(「介入」と呼ぶ)を推奨するために、予測的プロセスモデルを利用する新しい技術です。処方箋的プロセスモニタリングはコストを重視します。例えば、顧客への納品の迅速化や優先順位付けのコストと、特定の顧客への早期納品のメリット(他の納品を犠牲にする可能性もあります)とのトレードオフを最適化します。また、経営者による予防措置のコストと、全体的な利益との間のトレードオフを最適化します。

処方分析技術は、eコマースの分野で高いレベルの成熟度に達しています – Youtubeなどの大手メディアサイトで使用されているレコメンド(推奨)システムを考えてみてください。私は、この技術の一部が今後数年のうちに、処方的プロセスモニタリングのエンジンに組み込まれることを予想しています。


トレンド5.  自動化されたプロセス改善(AutoPI)


現在のプロセスマイニングの方法は、主に可視化とダッシュボードに基づいています。これらの方法では、プロセス内の問題点とその解決方法を特定するためには、アナリストや専門家が一連の可視化をナビゲートする必要があります。

ビジネスプロセスの可視化は、問題(ボトルネックや繰り返し業務など)があることを示していても、それに対処する方法を教えてくれるわけではありません。たとえば、リソース(担当者)の再配置や再教育をすべきか、いくつかのタスクやハンドオフ(部門間にわたる業務の受け渡し)を自動化すべきか、どのタスクを自動化すべきか、タスクの実行方法を変更すべきか、タスクを早めに実行すべきか、それともプロセスの後半に延期すべきか、また、プロセスの早い段階で顧客にリマインダーを送るべきか、などを教えてはくれません。

自動化されたプロセス改善(AutoPI)は、ビジネスプロセスをどのように変更すべきかについての幅広い選択肢を自動的に探索します。そして、欠陥率、コスト、手作業やスループットなどの1つ以上のプロセスパフォーマンス指標を最適化するための変更の組み合わせを発見するための発育途上の技術です。

AutoPIはまだ初期段階にありますが、今後1~2年でいくつかのプロトタイプやパイロットケースが登場し、2020年代半ばには成熟したツールが登場することを期待しています。


結 論

上記は、来年のプロセスマイニングの分野で期待されるワクワクする展開のほんの一部に過ぎません。もちろん、ICPM’2020カンファレンスのインダストリーパネルで議論されたように、今後数年間で取り組むであろう課題は他にもあります。

プライバシー保護のプロセスマイニング、クロスプロセス分析、イベントログの品質の自動検証と強化などの技術的な課題に取り組むために、いくつかの進歩があることは間違いありません。また、プロセスマイニングの戦略的位置づけやガバナンスの分野では、プロセスマイニングの成熟度モデルや、「全社的プロセスコントロールルーム」のような管理概念の出現など、問題が発生したときに、反応的にプロセスマイニングの調査を開始するのではなく、プロセスが全体的かつ先を見越して管理されるような、多くの発展が期待されています。

あなたがプロセスマイニングの世界に入れば、さらなる楽しみがあるでしょう。また、プロセスマイニングを実践に取り入れることを躊躇しているBPMの実務家にとっては、成熟した現時点でのプロセスマイニングと、今後の多くの新たな開発の両方を活用することができる今が、プロセスマイニングをBPMに統合する絶好のチャンスでしょう。


免責事項、承認およびライセンス


この作品は、タルトゥ大学の教授として書かれたものです。私の研究は、欧州研究評議会(PIXプロジェクト)とエストニア研究評議会から資金提供を受けています。また、オープンソースのプロセスマイニングソリューションを提供するApromoreの共同設立者でもあります。後者の所属に偏らないようにしています。

この記事はクリエイティブ・コモンズ 表示一般ライセンス CC-BY 2.0 の下でライセンスされています。

marlon dumas  Marlon Dumas – Professor at University of Tartu | Co-founder at Apromore

→ 原文はこちらからどうぞ

プロセスマイニングの日本神話

myth vs reality

Japanese Myths of Process Mining
English follows Japanese. Befor proofread.

プロセスマイニングに対する関心が生まれたのは、日本では2018年後半から。以来、約2年が経過して、プロセスマイニングへの関心はさらに高まっており、大手企業を中心に、プロセスマイニングを導入して一定の成果を出している企業が増えています。具体例としては、通信キャリア大手のKDDI、重工業大手のIHI、物流大手の日立物流、金型商社大手のミスミなどが積極的にプロセスマイニングを活用しており、その取り組み事例が各所で報告されています。

ただ、いまだプロセスマイニングに対して懐疑的な日本企業も少なくなく、いわゆる日本特殊論ともいえる神話が語られている状況も見受けられます。

当記事は、日本企業が抱きがちな、プロセスマイニングについての2つの神話を打ち砕くことを目的としています。


神話1 日本企業のシステムは複雑すぎてプロセスマイニングでは分析できない

日本企業はSAPのようなパッケージをデフォルトのまま採用することが少なく、現状業務手順に合わせて大幅なカスタマイズを行ったり、ゼロからスクラッチで開発することが多いのは確かです。さらに、業務内容の変化に合わせて改修を重ねてきており、システム構成が非常に複雑怪奇になっていることも少なくありません。

このため、イベントログも複雑であり、プロセスマイニング分析は通用しない、と思い込んでいる方がいます。しかし、これは幻想です。

プロセスマイニング導入で先行する欧州の企業でも、老朽化し、複雑化したレガシーシステムを未だ運用しているところも多いのです。そうしたシステムから抽出されたトランザクションデータは確かにクオリティは高くなく、プロセスマイニング分析に堪えるイベントログへと整形するための工数は嵩みます。

しかし、決して不可能ではなく、美しいプロセスモデルは描けないとしても、複雑怪奇な現行システムの概要を把握することは可能であり、プロセスマイニングを起点として、より優れた業務プロセスの設計とそれを支える業務システムの要件定義へと駒を進めていくことができます。

真実:イベントログがなんらか存在するかぎり、どんな複雑なシステムであったとしても、プロセスマイニングは実行可能です。


神話2 各種紙の書類を処理する手作業やエクセル操作など、システム上で行わない業務が多いのでプロセスマイニングは意味がない

手作業やエクセルなど、システム外で行われる業務が多いのもまた、日本企業に限ったことではありません。IT調査会社のフォレスターの最新調査によれば、欧米企業の実に7割が業務においてなんらかの手作業を行っていると回答しています。

紙の伝票処理など、手作業部分はデジタルデータとして捕捉ができず、プロセスマイニングではもちろん分析対象とはできません。エクセルなどのオフィススイートの操作も、トランザクションデータとして自動的に記録されるものではありません。

しかし、手作業はOCRなどを用いることで電子化されたり、ワークフローに組み込むことによって業務の足跡が残る割合も高くなってきました。また、エクセル操作などは、タスクマイニングによって、PC操作ログとしてデータ捕捉が可能です。

このように、デジタル化の進展によって、プロセスマイニング分析が容易に実行できる環境が整いつつあるのです。

また、手作業やPC操作が多く含まれる業務プロセスであったとしても、業務システムが活用されていれば、節目のアクティビティに基づくプロセスモデルは描写可能であり、どこに非効率性やボトルネックが存在するかを発見することは可能です。

そして、プロセスマイニングで発見された非効率な箇所、ボトルネックは、手作業やエクセル操作が行われていることが多く、プロセスマイニングの結果に基づく改善施策として、手作業の電子化やワークフローシステムによる標準化が推進されます。このことがさらにプロセスマイニング分析の有効性を高めるという良循環が発生するのです。

真実:手作業やエクセルなどの操作が含まれる業務に対するプロセスマイニングも十分な成果を導けます。


Japanese myths of Process Mining

Interest in process mining was born in Japan in late 2018. About two years have passed since then, and interest in process mining has grown even more, with an increasing number of companies, especially major corporations, introducing process mining and achieving a certain level of success.

For example, KDDI, a major telecommunications carrier, IHI, a major heavy industry company, Hitachi Transport System, a major logistics company and MISUMI, a major mold trading company, are actively using process mining, and use cases of their efforts are being reported.

However, there are not a few Japanese companies that are still skeptical about process mining, and it can be seen that there are some myths that can be called Japan-specific myths.

This article aims to debunk two myths that Japanese companies tend to hold about process mining.

Myth 1: Japanese companies’ systems are too complex to be analyzed by process mining

It is true that Japanese companies rarely adopt packages like SAP as the default, and they often perform extensive customization to match current business procedures or develop from scratch. In addition, it is not uncommon for the system configuration to be very complex and bizarre, as it has been repeatedly modified in response to changes in business operations.

For this reason, some people assume that the event log is also complex and that process mining analysis will not work. However, this is an illusion.

Many European companies, which are leading the way in the adoption of process mining, are still running legacy systems that have grown in age and complexity. The transaction data extracted from such systems is certainly not of high quality, and it takes a lot of man-hours to format the data into an event log that is suitable for process mining analysis.

However, it is not impossible, and even if it is not possible to draw a beautiful process model, it is possible to get an overview of the complexity of the current system, and, using process mining as a starting point, to design better business processes and define requirements for the supporting business system.

Reality: As long as there is some kind of event log, process mining is feasible for any complex system.


Myth 2: There are many tasks that are not performed in the system, such as manual processing of various paper documents and Excel operations, so process mining is useless.

The fact that much of the work is done outside the system, such as by hand or in Excel, is not limited to Japanese companies; a recent survey by Forrester, an IT research firm, found that a whopping 70 percent of U.S. and European companies do some kind of manual work in their operations.

The manual part, such as processing paper slips, cannot be captured as digital data and cannot be analyzed by process mining, of course. Even operations in office suites, such as Excel, are not automatically recorded as transactional data.

However, manual operations can be digitized by using OCR and other tools, or incorporated into workflows to leave a high percentage of digital footprints. In addition, Excel operations, for example, can be captured as a PC operation log or user interaction log by task mining.

Thus, with the advancement of digitalization, an environment is being created in which process mining analysis can be easily performed day by day.

In addition, even if a business process involves a lot of manual and PC operations, if the business system is used some part of it, it is possible to describe a process model based on milestone activities and discover where inefficiencies and bottlenecks exist.

And the inefficiencies and bottlenecks discovered by process mining are often manual operations or Excel operations, and as improvement measures based on the results of process mining, digitization and digitalization of manual operations and standardization through workflow systems are promoted. This creates a virtuous circle that further increases the effectiveness of process mining analysis.

Reality: Process mining for operations that involve manual operations and Excel can also lead to satisfactory results.

プロセスマイニングツールとBIツールは融合するか?

difference between pm tool and bi tool

Will Process Mining tool and BI tool be amalgamated?
English follows Japanese. Before proofread.

プロセスマイニングツールとBIツールは融合するか?

その答えはイエスです。すでに融合が始まっています。

具体的な動きとしては、Power BIのアドオンとして「PAFnow」というプロセスマイニングツールが提供されています。同様に、Qlikのアドオンとしては「MEHRWERK ProcessMining」が提供されています。

一方、プロセスマイニングツールも、イベントログからプロセスモデルを自動的に作成する「プロセス発見」をはじめとするプロセスマイニングの標準機能に加えて、「ダッシュボード機能」を充実させてきていますが、このダッシュボード機能はBIツールが提供する機能水準に近付きつつあります。


さて、プロセスマイニングツール、BIツールのどちらも、企業・組織運営に関わる様々なデータを取り込んで、様々な切り口で数値を演算し、その結果を表やグラフなどでビジュアルに提示するという点は同じです。

プロセスマイニングツールとBIツールの決定的な違いは、演算結果をどのように解釈し、活用できるか、という点にあります。

具体的には、以下のように説明できます。


●プロセスマイニングツールが提示する演算結果

価値を生み出すアクティビティ(プロセス)のパフォーマンス=原因指標である。すなわち、プロセスマイニングツールがカバーするのは主に、KPI(Key Performance Indicator)である。

たとえば、保険会社の保険金請求処理プロセス(保険加入者からの保険金請求~保険金支払い)であれば、プロセスマイニングツールで分析することによって、プロセスに含まれるアクティビティごとの処理案件数や、処理に要した総所要時間(スループット)、処理コスト、担当者数などを算出できる。

また、プロセスマイニングならではのプロセス発見機能によって、業務手順を自動的にフローチャートとして描き出し、プロセスのどの部分にボトルネックや非効率な繰り返し作業が発生しているかを特定できる。

このように、価値を生み出すアクティビティ、すなわち原因系データを分析することで、さらに価値を高めたり、あるいはコストを削減するための業務プロセス改善施策へとつなげることができる。

BIツールが提示する演算結果

生み出された価値(売上や利益など)の大きさ=結果指標である。すなわち、BIツールがカバーするのは、KGI(Key Goal Indicator)である。

BIツールでは、企業活動の結果としての売上や利益、市場シェアなどを主に算出し、事業部別、エリア別、製品別などの各種次元(ディメンジョン)で多面的な分析が可能である。

BIツールでは、どの事業部、あるいはエリアが優れた(劣った)結果を残しているか、という判断を行うことはできるが、なぜ結果が優れているか(劣っているか)という原因を推測することはできない。そもそも、結果につながる原因系データを分析対象とはしていないためである。


以上ご説明したように、両者の違いをまとめると、BIツールは、期末の通信簿のようなものであり、最終的な評価を下し、また次期のKGIの目標設定に役立てるもの。一方、プロセスマイニングツールは、期中の細かいパフォーマンスを分析して、KGIの目標達成のためにどのように改善すべきかを検討するために役立てるもの、と言えるでしょう。

なお、データの分析方法について、最近新たに生じてきたもうひとつの違いがあります。

BIツールは分析期間全体を対象とした過去データのスナップショットの数値を算出するのみであるのに対し、プロセスマイニングツールは、現在は知っている案件のデータを逐次分析するリアルタイムモニタリングを行う機能が付加されてきているということです。


企業・組織運営の状況を継続的に振り返り、改善すべき点は改善し、目標達成を確実にするためには、BIツールによるKGI評価とプロセスマイニングツールによるKPI評価の両方を併せて行うことが不可欠です。

現状は、両者のツールを組み合わせて活用する企業が増えていますが、冒頭に述べたように、プロセスマイニングツールとBIツールの境界はぼやけつつあり、将来的には融合して一体的なツールとして提供されていくことになると思われます。


Will Process Mining tool and BI tool be amalgamated?

The answer is yes. The integration has already begun.

In terms of specific developments, a process mining tool called “PAFnow” is available as an add-on for Power BI. Similarly, “MEHRWERK ProcessMining” is offered as an add-on for Qlik.

On the other hand, process mining tools have also been enriching their “dashboard features” in addition to the standard features of process mining, such as “process discovery” which automatically creates a process model from the event log, but this dashboard feature is now close to the level of functionality provided by BI tools.

By the way, both process mining tools and BI tools are the same in that they take in various data related to corporate and organizational management, calculate numbers from various angles, and present the results visually in tables and graphs.

The decisive difference between a process mining tool and a BI tool is in how the calculation results are interpreted and utilized.

Concretely, we can explain as follows.

Calculation results presented by process mining tools

Process mining tools mainly look to performance of activities (processes) that create value = causals. In other words, process mining tools mainly cover Key Performance Indicators (KPIs).

For example, in the case of an insurance company’s claims processing process (from insurance claim to payment), process mining tools can analyze the number of cases for each activity in the process, the total time required for processing (throughput), processing cost, and the number of people in charge, and so on. In addition, the process discovery function can automatically draw a flowchart of business procedures to identify problems such as bottlenecks and inefficient repetitive tasks.

In this way, by analyzing activities that create value, i.e., causal data analysis, it is possible to link them to business process improvement measures to further increase value or reduce costs.

Calculation results presented by BI tools

BI tools mainly look at The size of value (sales, profit, etc.) generated = outcomes. In other words, BI tools cover KGI (Key Goal Indicator).

BI tool basically calculates sales, profit, market share, etc. as a result of corporate activities, and enables multifaceted analysis in various dimensions such as by division, area, and product.

BI tools can make judgments about which business units or areas are producing superior (or inferior) results, but they cannot infer the causes of why results are superior (or inferior). This is because it does not analyze causal data in the first place.


As explained above, to summarize the differences between them, BI tools are like a report book at the end of the term, and they are used to make final evaluations and to set new goals for theKGI in the next term. On the other hand, process mining tools are used to analyze performance in detail during the period and consider how to improve it in order to achieve the goals of KGI.

There is one more difference in the way data is analyzed that has recently emerged.

While BI tools only calculate a snapshot figure of historical data for the entire analysis period, process mining tools are now adding the ability to perform real-time monitoring that sequentially analyzes the data of the cases in the processing.

In order to continuously look back on the status of corporate and organizational operations, and to improve what needs to be improved, ensuring the achievement of goals, it is essential to combine KGI evaluation using BI tools and KPI evaluation using process mining tools.

Currently, more and more companies are using a combination of both tools, but as mentioned at the beginning of this article, the boundary between process mining tools and BI tools is blurring, and in the future, they will be provided as a combined tool.

プロセスマイニング事例:ブラジル政府 – 立法プロセス分析

Process Mining Case: Normative Process in the Braziian Executive Branch

ブラジル連邦共和国政府では、文字通り、官僚的な政府の業務プロセスについてプロセスマイニング分析を行い、その改善に取り組んでいます。

プロセスマイニング分析の対象となったのは、具体的には、大統領直轄の執行機関による立法プロセスです。ブラジルも多くの国と同様、三権分立制を採用しており、各種の法を制定する立法機関(Legislative Branch)、すなわち議会、および、法に基づく執行をつかさどる執行機関(Executive Branch)、そして法に基づく裁判を行う審判機関(Judicial Branch)、すなわち法廷の3つの機関で構成されています。

ただし、法律の起案は議会だけでなく、大統領直轄の執行組織である大統領府(英語ではCivil Hose of the Presidency fo the Republic)が、各省庁との連携のもと、憲法改正や、暫定法、大統領令などを起案することが可能です。この大統領府による立法プロセスに関わるイベントログに対してプロセスマイニングが実行されたというわけです。

プロセスマイニングが行われた目的は、重複する法制度が立案されてしまっていたり、立法にいたる手順に様々なボトルネックやリワーク(手戻り、繰り返し)が発生していたりする現状を明らかにし、より優れた立法プロセスへと改善する=近代化する(modernize)ことでした。

さて、大統領府における立法プロセスは、大きくは以下の4段階です。


1 法案の着想(Conception of the act)

2 ステークホルダーとの議論(Discussion of the act)

3 法案の取りまとめ(Consolidation of the act)

4 法案への署名(Signature of the act)


法案の着想は、基本的には各省庁担当者が行います。各担当領域について法案を起案するにあたって現状分析・診断や代替案の検討、費用など、社会にとってどのような現実的な結果がもたらされるかが検討されます。

ステークホルダーとの議論は、起案された法案に関わる様々なステークホルダー(利害関係者)のすり合わせを行う段階です。ステークホルダーには、法案の内容によって、市民、企業、議員、外国人などが含まれます。

法案の取りまとめは、関係各所、ステークホルダーとの議論を踏まえ、なんらかの合意が得られた内容にまとめあげる段階です。そして、まとめられた法案はまず、公式書類を収録するシステム(Sidof)に投入されます。その後、大統領府においては、電子情報システム(Sei!)上で法案が処理され、最終化されて大統領の署名を待つことになります。

法案への署名は、大統領の署名、および閣僚による投票が行われる段階です。


以上の立法プロセスは現実には非常に複雑なものであり、利用される情報システム、アプリケーションも複数存在します。例外的な処理も多く発生せざるを得ません。このため、プロセスマイニング分析を行うに当たっては、法案の着想段階やステークホルダーとの議論段階において、非公式にやりとりされたEメール受送信データは対象外とされました。

そして、一般的な立法プロセスを導出するために、次の2つの分析が可能になるようデータ前処理が行われています。

・省庁間の情報のやりとり、および大統領府へ提出される標準手順(Sidofシステム登録まで)

・大統領府内での内部処理(Sei!システムでの処理)

公式文書管理システムであるSidofに登録されている立法案件は合計9,906件(2010年10月1日~2018年3月12日)でした。うち2,964件の法令や暫定法が公布されていました。


この2964件の立法プロセスのプロセスマイニング分析結果からは様々なことが明らかになりました。まず、平均的な所要期間は、30週であること。また、プロセスのバリエーションは2,739に上っており、一番多いパターンで21案件しかなかったことです。要するに、標準的な手順は実質的に存在していないということです。

また、大統領府内での法案処理プロセスに用いられるシステム「Sei!」のデータ分析からは、ボトルネックの存在が示唆され、またそれに関わる主要なプレーヤーは、法令部門(Leagal Unit)、および政府方策部門(Government Policies Unit)の2部門であることも判明しました。


上記のような各種分析を踏まえ、次のような改善施策が講じられています。

・Sei!システムとSidofシステムの両方の機能を備え、かつ問題点を解消した新たなシステムのプロトタイプを作成し、立法プロセスの標準化を促進する

・マイクロソフトのSharepointやTeamsなどのコラボレーションツールを導入して、立案プロセスに関与する関係者の協働作業を円滑に行えるようにする

・内部の業務処理手順を再設計する


上記事例は、Case Study: Government Proess Mining in the Brazilian Executive Branch ( Fluxicon)のポイントを和訳したものです。詳細は同記事をお読みください。

プロセスマイニング事例:Siemens – 受注プロセス改善のためのKPI「デジタルフィット率」

Process Mining Case: O2C – Digital Fit Rate

Siemensでは、O2C(Order to Cash)、すなわち受注から入金までのプロセスの改善の取り組みにプロセスマイニングを活用し、「デジタルフィット率」という同社独自のKPIを開発し、グローバル規模での成果を積み重ねています。

従業員数38万人以上、総売上970億ドル(全社、2019年)のSiemensでは、当然ながらこれまでも様々なプロセス改善の取り組みが行われてきています。たとえば、ワークショップを開催して業務プロセスをマッピングするなどの方法が採用されてきています。

ただ、プロセス改善の取り組みは基本的に、一部の事業単位などを対象とするプロジェクトベースであり、マッピングなどの現状把握のため、現場を巻き込んみつつ多大な労力が必要な割に、改善成果が見えずらく、また他の部署や他国オフィスと改善の取り組み内容を共有したり、拡張したりすることが困難でした。

このような状況下、2016年、同社は「O2C」のコスト低減を目的としたプログラム、「Order Management for Tomorrow(OM4T)」を開始。コスト削減のために、主に販売業務を支えるバックオフィス業務の効率化や自動化を実現することを目指したのです。

同社の事業部門のひとつ、Digital Industriesで同プログラムを牽引したのは、Gia-Thi Ngyen氏 ( Head of Operational Excellence)と、彼がメンバーとして声をかけた、Franziska Bierack氏(Project Manager)と、Ines Korner氏(Project Manager)の3人のチームです。

FranZiskaとInesはどちらも、顧客からの注文を受け付ける部門に所属しており、エクセルでの作業など、バックオフィス業務における手作業(マニュアルアクティビティ)の多さに辟易していました。

さて、彼らは1年ほどの間に30以上の国の同事業部オフィスを訪問し、新たなプログラムの展開、浸透に従事しましたが、その際、重要なKPIとしてFranziskaが開発したのがデジタルフィット率(Digital fit rate)です。

デジタルフィット率は、以下に示したように、マニュアルアクティビティ数を受注アイテム数で割るだけのシンプルな数値です。

デジタルフィット率=マニュアルアクティビティ数÷受注アイテム数

デジタルフィット率は、マニュアルアクティビティ数が、受注アイテム数よりも多ければ1以上となり、逆に少なければ1未満となります。したがって、デジタルフィット率が1を下回って少なければ少ない数値であるほど、手作業が少なく効率的でコスト低減につながっていることになります。

デジタルフィット率が最も重要で”使える”指標としてSiemensで受け入れられたのは、シンプルでわかりやすいだけでなく、サブ的な指標である「自動化率」や「リワーク(繰り返し)率」も包含する指標だったことがあります。

Source: The Digital Fit Rate explained in detail

というのも、業務プロセスにおける自動化率は高ければ高いほど、言うまでもなくマニュアルアクテイビティは少ないことを意味します。また、リワーク率は、変更やミス発生による繰り返し、やり直しの割合を示していますが、これが少なければ結果的にマニュアルアクティビティ数が減少します。

こうして、デジタルフィット率をコア指標として、各種ダッシュボードで地域別、資材別、顧客別など様々な切り口での分析ダッシュボードを全世界で共有し、数値の改善度合いを見える化することで、各国とも積極的にプロセス改善に取り組むモチベーションも向上しました。

当プログラム展開の結果、自動化率は24%増加、手作業の手戻りは11%減少、実質的に1千万件以上の手作業が削減されたことになります。

参考資料等

『プロセスマイニングの衝撃』ラース・ラインケマイヤー編著、百瀬公朗訳、インプレス社

Siemens: The Power of Process Improvement on a Global Scale

The Digital Fit Rate explained in detail

【速報】Gartner, Market Guide for Process Mining 2020

 米ITアドバイザリ企業Gartnerが、2020年版となる『Market Guide for Process Mining』を2020年9月30日に公開しました。

当記事では主なポイントを速報としてお伝えします。

最新版では、プロセスマイニングができること(Capabilities)がバージョンアップされています。具体的には以下の10個です。これらは、各種プロセスマイニングツールがおおむね提供している、あるいは今後提供を目指していると思われる機能とも言えます。


・プロセス、例外処理、案件、そして従業員の関わりについて自動的にモデル(フロー図など)を作成

・カスタマーとのやりとり、カスタマージャーニーを自動的にモデル化すること、および関連分析

・適合性検査、およびギャップ分析

・プロセスモデルの強化(改善)のための追加的分析(属性を付加した分析)

・データ前処理、データクレンジング、ビッグデータへの対応

・意思決定支援を可能にする、KPIの継続的モニタリングのためのリアルタイムダッシュボード

・予測的分析、処方的分析、シナリオ検証、シミュレーション

・プロセスマイニングアプリケーションを作成できるAPIを提供し、また高度な分析と意思決定支援が行える、様々なプロセスにまたがるプロセスマイニング分析のプラットフォーム

・様々な異なるプロセス間のやり取りや、それら複数のプロセスが同じワークステーションや職場、デスクトップPCでどのように実行されているかの分析

・ユーザーインタラクションログ(PC操作ログ)に基づくタスクマイニング分析


また、Gartnerは、プロセスマイニングが採用されるメインドライバーとして以下の4つを挙げています。

・デジタルトランスフォーメーション – Digital Transformation

・人工知能(AI) – Artificial Intelligence

・タスクオートメーション – Task Automation

・ハイパーオートメーション – Hyperautomation

ハイパーオートメーションとは、ひらたく言えば、RPAなどを用いたタスクオートメーション、ワークフローやiBPMSによるプロセスオートメーション、そしてDigitalOpsによる業務オペレーション全体の自動化をチャットボット、スマーとスピーカー、AI、機械学習などの様々なテクノロジーも組み込みながら実現していこうとするものです。


標準的なプロセスマイニングのユースケースとしては以下の5つが挙げられています。なお、アルゴリズムとは、イベントログからプロセスモデルを自動的に描くために、プロセスマイニングツールに組み込まれているものです。

・アルゴリズムによるプロセス発見、分析によるプロセスの改善

・アルゴリズムによるプロセスの比較、分析、検証による監査、コンプライアンスの改善

・自動化の機会の発見と検証によるプロセス自動化の改善

・戦略と業務を結びつけ、柔軟な組織を生み出すことによる、デジタルトランスフォーメーション(DX)の支援

・アルゴリズムによるITプロセスの発見と分析に基づく、IT業務のリソース最適化の改善


2020年版で示されているプロセスマイニングの代表的ベンダー・ツールは以下の20種類です。

 ABBYYTimeline
 ApromoreApromore
 BusinessOptixBusinessOptix
 CelonisCelonis Intelligent Business Cloud Platform
 Cognitive TechnologymyInvenio
 EverFlowEverFlow
 FluxiconDisco
 IntegrisExplora
 Lana LabsLANA Process Mining (Magellanic), LANA Connect (Rockhopper)
 LogpickrLogpickr Process Explorer 360
 MEHRWERKMEHRWERK ProcessMining (MPM)
 MinitMinit
 Process Analytics Factory (PAF)PAFnow
 Process Mining Groups at TUE and RWTHProM, ProM Lite, RapidProM, PM4Py
 Puzzle DataProDiscovery
 QPR SoftwareQPR ProcessAnalyzer
 SignavioSignavio Process Intelligence
 Software AGARIS Process Mining
 StereoLOGICStereoLOGIC 2020
 UiPathUiPath Process Mining, UiPath Task Mining

レポート内容詳細は、『Market Guide for Process Mining』の原文を参照ください。

プロセスマイニング事例:Siemens Healthineers – マシンログ(CTスキャナー)分析

ct scanner

Process Mining Case: Siemens Healthineers – CT Scanner data analysis

Siemens Healthineer(以下、SHS)は従業員数3万人超、医療機器のCTスキャナー(コンピュータ断層撮影)のグローバルマーケットリーダーです。CTスキャナーのグローバル市場シェアは33%以上、年率10%の成長率を続けています。

現在世界で29,000台のCTが稼働しています。CTを動かすためのソフトウェアは3つのプラットフォーム上で開発されており、合計31システム、バリエーションは74あるため、設定条件は最大3000パターンに上っています。

さて、稼働中の29,000台のCTのうち、最大14,000台については日々の稼働データがXMLファイル形式で送信されており、蓄積されるデータ量は50G/日です。このビッグデータはBIの「Qlik」で集計され、様々な文政ダッシュボードが作成されて社内で利用されています。

同社が、CTスキャナーのイベントログデータに対するプロセスマイニングに取り組んだ背景には、BIによって、CTがどう(WHAT)稼働しているかのスナップショットは十分分析できているが、どのように(HOW)稼働しているかを把握したいという動機がありました。

CTスキャナーにおける作業プロセスは大きくは以下の流れです。

1 患者を登録(Register Patient)

2 プロトコールのアップロード(Load Protocol)

3 患者位置確定(Confirm Position)

4 走査位相のアップロードと読み込み(Load Topo)

5 走査開始(Scan)

6 再構成(Reconstruct)

7 終了(Close)

上記のログデータはマシンログとして記録されており、同社ではSQLサーバに蓄積しています。このマシンログを抽出、整備してプロセスマイニング分析を実行しています。

SHSで採用しているプロセスマイニングツールは、「MEHRWERK Process Mining(以下、MPM)」です。同社がMPMを採用した最大の理由は、MPMはQlikのプラグインとして提供されており、既に社内で活用されているQlikと一体的に利用することが可能だったからとのこと。

プロセスマイニングを通じて、CTスキャナーが現場でどのように(HOW)利用されているかが明らかとなり、様々な改善ポイントも見えてきました。

例えば、走査時間が徐々に遅くなってきており、CTスキャナーの一人の患者当たりのスループット(総利用時間)が長くなる傾向がデータから明確になりました。これは、アルゴリズムのパラメターの設定方法の見直しや、ソフトウェアにおけるなんらかの改善が必要なことを示唆します。

また、CTスキャナーの操作手順のバリエーションは、87,000以上に上ることがわかり、手順の標準化を推進すべきであることも判明しました。プロセスマイニングではこうしたバリエーションを詳細に検証可能であり、標準化を行う助けとなります。

また、地域(例えば、中国と米国)間の操作方法の比較分析なども行うことで、同社CT製品の改善に取り組んでいます。

プロセスマイニング事例:Suncorp – 保険金請求処理プロセスの劇的改善

insurance claim form

Process Mining Case: Suncorp – Huge improvement in Claim handling process

サンコープ(Suncorp)はブリスベーンに本社を置く、オーストラリア最大の保険・金融事業グループです。従業員数は16,000人以上、顧客数は900万人に上ります。

サンコープ社がプロセスマイニングに取り組んだ時期も早く、2012年頃からです。当時は商用ツールは普及していません。そこで同社では、オープンソースのプロセスマイニングツール、「ProM」を利用し、クィーンズランド工科大学の研究者の支援を受けて保険業務のプロセスマイニング分析に取り組んだのです。

保険業務のプロセスは、E2E(End-to-End)では、保険商品の開発から販売、サービス、そして保険金請求処理までが含まれ、業務要素は500に上ります。また、保険商品の種類としても、家財保険、自動車保険をはじめ30種類を超えます。結果として、プロセスのバリエーションとしては3000以上と非常に複雑なものです。

こうした複雑なプロセスを運営するサンコープ社では以下のような課題を抱えていました。

・ガバナンス不在:現場担当者のトレーニングが不十分、かつ手順が確立されておらず、責任者が不明確

・トップの支援不足:トップの理解が弱く、現場の改善のために必要な投資や支援が十分に得られない

・計画・ツールの欠如:プロセス最適化のための計画やツールが不足

上記のような課題を解決するため、同社ではプロセスマイニングを通じて現状プロセスを可視化し、問題点について社内の理解を得やすくしたうえで、必要な改善施策を講じることに取り組みました。

とりわけ劇的な改善成果を上げたのが、保険金の請求処理プロセスです。これは、例えば自動車事故を起こした場合に、契約者が行った保険金請求案件について、内容を審査し、事故に関連した費用をカバーする保険金を支払うまでの一連の手順です。

まず、保険金請求処理プロセスのスループット(総所要時間)の分布を分析。横軸に保険金支払額の大きさ、縦軸にスループットを取った2軸に各処理案件をプロットした下図を見ると問題が明らかです。

Source: Understanding Proess Behaviours in a Large Insurance Company in Australia: A Case Study, Conference Paper – June 2013

右上の「Complex Slow」は、支払保険金額が大きく審査に時間がかかることからスループットが長くなっていいる案件です。ある程度時間が長くなるのは許容しなければならないでしょう。

右下は「Complex Quick」です。支払保険金額は大きいもののスループットが短くなっています。安易な審査になっていなければ、支払保険金額が大きくてもすばやく契約者に振り込めるのは顧客満足度を向上させるでしょう。

左下は、「Simple Quick」です。支払保険金額は少なく、スループットも短い。問題なしです。

左上の「Simple Slow」が問題プロセスです。支払保険金額が少ないのにスループットが長くなってしまっている。保険金額の大きさと比較してよけいな手間、コストを要してしまっているという内部的な問題であり、かつ少額の保険金請求なのになかなか保険金が支払われない、という点においては顧客の満足度を低下させてしまうことにつながっています。

この問題の解決の基本方針としては、少額保険金請求案件はできるかぎりスループットを短くする、すなわち、プロット図で見ると、左上にある案件を左下に移動させるということです。

そこで、左上の「Simple Slow」のプロセスと左下の「Simple Quick」のプロセスの流れをフローチャートとして描き比較分析を行いました。

Source: Understanding Proess Behaviours in a Large Insurance Company in Australia: A Case Study, Conference Paper – June 2013

このように2つを並べてみると、例えば、「Simple Slow」(右)の場合、フローチャートの左側にある「Follow Up Requested」において「繰り返し(リワーク)」が大量に発生していることがわかります。

上記以外にも、様々な切り口でプロセスマイニング分析を行い、保険金請求処理プロセスのスループットを長くしているボトルネックを発見し、ボトルネックを解消するための改善施策を計画、実行に移しました。

改善効果は劇的なものでした。従来、保険金請求を受け取ってから保険金支払までのスループットはおよそ30日~60日でしたが、改善後はわずか平均5日へと大幅に短縮。顧客満足度の向上と業務効率化によるコストダウンを実現しています。

プロセスマイニング事例:ABB – 処方的分析の取り組み

supply chain management

Process Mining Case: ABB – Prescriptive Anaytics

ABB(Asea Brown Boveri、アセア・ブラウン・ボベリ)はスイスに本社があり、電力関連、充電、重工業を主事業とするエンジニアリング企業です。従業員数は約11万人、世界100カ国以上に事業展展開しています。

ABBは、プロセスマイニングの早期採用企業のひとつです。2013年に、Celonisによる初めてのPoC(Proof of Concept)をドイツにあるグループ企業にて実施。2018年には、グローバル規模での全社導入を開始しています。

2019年以降は、サプライチェーン全体をデジタル化(デジタルサプライチェーン)して、E2E(End to End)で可視化、さらに、プロセスに潜む問題点の発見だけでなく、どのように改善すべきかを提示してくれる処方的分析(Prescriptive Analysis)のパイロットプログラムを走らせています。

ABBのデジタルサプライチェーンにおけるE2Eとは、原材料等の購買から製造、顧客への販売、納品までをカバーするものです。したがって、このサプライチェーンに関わるシステムはERPだけでも60以上、その他のアプリケーション(SalesForceやオフィスソフトなども含む)は全世界で6000以上という巨大で複雑なものです。

そこで、ABBでは、プロセスマイニングツールをプロセス分析としてだけでなく、多数のシステム、アプリケーションをイベントログデータとして相互接続するためのツールとして活用しています。

こうしてサプライチェーン全体をデータとして統合し、プロセスマイニング分析を行うことで、Gartnerが説く、DTO(Digital Twin of an Organization)の実現を目指し、以下の3つの領域に取り組んでいます。

1 モニタリング:継続的改善

2 モデリング:as isとの適合性、プロセス最適化

3 エグゼキューション:プロセス自動化、リアルタイムアラート(問題指摘、改善提案)


デジタルサプライチェーンに含まれる主なプロセスは以下の通りです。

  • マスターデータ管理
  • 販売プロセス
  • エンジニアリング
  • プロジェクト実行管理
  • サプライチェーン(購買プロセス)
  • 製造
  • 物流
  • 設置・試運転
  • 経理・財務処理

ABBでは上記のプロセスで採用されている様々なシステム(SAP, SFDC, SNOW, MES, PLM等)から抽出したイベントログデータをデータレイク化し、各種IDで接続することでE2Eプロセスのプロセスマイニングに取り組んでおり、主なKPIとしては以下のようなものを設定してダッシュボードを作成しています。

  • スループット
  • リードタイム
  • 在庫回転率
  • コスト
  • 品質

さらに、ABBでは、担当部署ごとの主要目標を設定し、プロセスの問題とその根本原因の発見を踏まえた具体的な改善アクション自動的に作成して、担当者にアラートを送信する手順を確立するパイロットプログラムを走らせています。これが「処方的分析」であり、プロセスマイニングで最も最先端の取り組みだと言えるでしょう。

Robidium – Robotic Process Mining Tool – PC操作ログから定型業務を抽出し、RPAスクリプトを自動記述

robidium toppage

Robidium – Robotic Process Mining Tool

「Robidium」は2020年9月にリリースされたRobotc Process Mining Toolです。

「Robotic Process Mining(RPM)」をご存じの方はまだ少ないでしょう。RPMは、タスクマイニングツールの一種です。

タスクマイニングは、PC操作ログ、すなわち、ブラウザーやエクセルなどを利用したPC作業を詳細に収集・記録し、個人単位での「タスク手順」を見える化してくれるソリューション。一般に、タスクマイニングの基本機能は、PC操作ログの収集からタスク手順の見える化までです。

しかし、RPMでは、さらに定型業務(ルーティンワーク)を自動的に抽出し、さらにそれをRPAのスクリプトとして記述してくれます。ソフトウェアロボットによる定型業務自動化までをカバーしてくれるので「Robotic Process Mining」と呼んでいます。

さて、RPMツール、「Robidium」による、PC操作ログの収集からRPAスクリプトの記述までの全体像は下図の通りです。

Source: Robidium Presentation

Source: Robidium Presentation


PC操作ログは、英語では、「UI(User Interaction)ログ」と呼ぶのが一般的です。ユーザーが、情報システム(PC上のアプリケーション)を操作する作業を詳細に記録します。(上図には記載ありませんが、ログ収集の対象となるPCにUIログ収集用のセンサー「RPA_UILogger」のインストールが必要です)

蓄積したUIログに対して分析を行い、ログの中から定型業務と想定される手順を自動的に抽出してくれます。(分析する前に、UIログデータのクリーニングのため、重複した業務などのノイズをフィルタリングしてくれる機能が別途あります)

自動的に抽出された定型業務のうち、RPAによる業務自動化が適切と考えられるものについては、RPAスクリプト(現在はUiPathのみ)を自動記述します。

RPAスクリプトが作成されたら、RPA(UiPath)でスクリプトを展開し、対象となった定型業務の流れが間違いなく実行されるかを検証した上で実装する。

以上ご説明したように、Robidiumでは以上のような手順でPC操作ログの収集からRPAロボット実装までの手順を支援してくれるツールであり、まだまだ技術的な課題があるものの、今後の普及が期待されます。

Robidiumのクラウドバージョンは現在無料でトライアルできます。

http://robidium.cloud.ut.ee/

以下、Robiduimの主な流れを示します。


Robidiumのトップページ

トライアル用のサンプルデータはトップページからダウンロードです。


データ前処理済のUIログをアップロードします。

*前処理機能は未提供

robidium interface log upload

パラメターの設定を行い、「IDENTIFY ROUTINES」を押下して分析を実行します。

robidium interface identify routines

定型業務(Routine)が4つ抽出されました。

robidium routine selection

定型業務の詳細手順を確認します。

robiduim interface routine detailes

RPAスクリプトを作成したい定型業務を選択し、「GENERATE SCRIPT」を押下するとスクリプトが作成されますので新規ファイルとして保存します。

robidium interface generate script

UiPathから上記スクリプトを展開します。以下はスクリプトの中身です。

uipath script

この後は、RPAツールでの作業となります。

HFS Top 10 Process Intelligence Products 2020 – プロセスマイニングツールトップ10 (2020)

HFS report on Top 10 Process Intelligence Products

米ITサービス調査会社大手のHFS Researchが、2020年9月、「HFS Top 10 Process Intelligence Products 2020」と題したレポートを発行しました。

HFSでは、40人を超える業界のリーダーたちにインタビューを行い、有望なプロセスインテリジェンス製品として14製品を選出しました。そして、大きくは、「革新(Innovation)」、「実行(Execution)」、「顧客の「声(Voice of the customer)」の3つの切り口で14製品を評価し、ランク付けを行いトップ10を決定しています。

総合評価ランキングは以下の通りです。

1位 Celonis

2位 minit

3位 Fotress IQ

4位 UiPath

5位 KRYON

6位 pafnow

7位 LANA

8位 myInvenio

9位 QPR

10位 ABBYY Timeline

HFSにおける「プロセスインテリジェンス」は、プロセスマイニング、およびタスクマイニングの両方のソリューションを含んでいます。上記トップ10ベンダーのうち、「Fortress IQ」、および「KRYON」は、タスクマイニングソリューションです。

上記プロセスマイニングベンダーのうち、CelonisやmyInvenioは、タスクマイニング機能の拡張を行っています。他のベンダーでも、タスクマイニング機能の拡張を図っているところがあります。

当レポートの詳細はHFSのサイトを参照ください!

→ https://www.hfsresearch.com/research/hfs-top-ten-process-intelligence-products-2020/

ランキング表はこちらから閲覧できます。

5M(ムダ、ムリ、ムラ、モレ、ミス)を特定できるプロセスマイニング

業務改善の視点から

Process Mining can find 5 problems being called, Muda, Muri, Mura, Mo-re, Miss in the target process
English follows Japanese. Before proofread.

TQC(Total Quality Control)に代表される品質管理は、基本的には業務遂行上の様々な課題問題を解決して、改革、改善を目指すものです。特に、工場などの製造現場で積極的に取り組まれてきましたが、物流、サービス、購買、セールスなど、様々な業界、また様々な企業活動への適用も行われています。近年は、TQCや品質管理という言葉はあまり取り上げられなくなりましたが、その考え方や手法は普遍的であり、今でも有効です。

さて、品質管理においては、改善対象となる課題・問題を大きく3つにまとめて、「ダラリ(ムダ、ムラ、ムリ)」、あるいは「3M」と呼びます。さらに、この3つに、「モレ」と「ミス」を追加したものが、「5M(ムダ、ムリ、ムラ、モレ、ミス)」です。

5Mは、イベントログに基づくプロセスマイニング分析にも、もちろん活用可能な枠組みです。むしろ、親しみやすい平易な言葉なので、分析実施が円滑に行える優れた切り口を提供してくれものだと言えます。

そこで、今回は5Mについて概説し、プロセスマイニングの分析方法との関連性をお伝えします。


5Mとは?

まず、5Mのそれぞれについて説明します。

●ムダ

ムダは、英語では「Inefficient(非効率)」と訳せます。

目的達成のための手順が多いため、あるいは複雑であるために処理時間がかかりすぎたり、そもそもやる必要のないことを形式的に続けていたりする業務です。なんらかの価値をあまり、あるいは全く生んでいない活動だと言えます。文字通り「ムダ」なので減らす、省くといった改善が必要となります。


●ムリ

ムリは、英語では「Over-burdened(過剰負荷)」です。

処理しなければならない案件数が非常に多かったり、たとえ案件数がそれほど多くなかったとしても、アサインされているスタッフが少ないために処理待ちの案件がどんどん溢れてしまう。結果として、業務の停滞、滞留が発生します。「ボトルネック」です。案件数と処理能力のバランスがとれておらず、過剰な負荷がかかっている箇所となりますので、流れてくる案件数の平準化や、自動化、スタッフ配置の最適化などの改善施策が実行されなければなりません。

●ムラ

ムラは、英語では「Inconsistent(一貫性欠如)」です。

ムラは、端的には作業手順のバラツキのことです。マニュアルが存在しない、あるいはあっても活用されておらず、個人の裁量に任せている部分が大きいと、手順が人によって違ってきます。結果として、スループット(総所要時間)が長かったり短かったりとバラツキが大きなり、またアウトプットの品質にも差が生じます。

また、基本手順は存在しているものの、現場での事情に応じて例外処理を行った結果、手順が入り組んだ流れになるケースが増えるてしまうと、やはりムラのある業務プロセスということになります。

ムラに対する改善施策としては、基本的には例外処理を減らし、標準化を図ることです。


●モレ

モレは、英語では「Omission(省略)」です。

抜け漏れなどとも言うことがありますが、行うべき手順を意図的に、あるいはうっかり飛ばしてしまったものが「モレ」です。例えば、生産ラインの検査工程において、やるべき検査は4種あるのに、3種だけ行って流してしまうことが慣行となっている場合、モレが発生している問題プロセスです。やるべき検査を一部端折っているわけですから、購入者が利用する際の事故につながったり、リコールを行う事態に発展する可能性があります。

また、コンプライアンスの観点から、やるべき業務が厳密に規定されている業務においては、モレは明確なコンプライアンス違反となります。

モレは基本的にはあってはならない逸脱プロセスですので、確実に実施するような教育・研修を行ったり、そもそもモレが生じないようなシステム的な縛りを与えたり、継続的なモニタリングを行ってアラートを出すといった改善案が検討されます。


●ミス

ミスは、英語で「mistake」です。そもそも、日本語のミスは、この英単語由来の転用語ですね。「Error(エラー)」の意味も含まれます。

ミスは、ヒューマンエラー、つまり業務を担当するスタッフが犯してしまう様々な間違いです。操作手順を入違える、入力値を間違うなど、そのまま放置することはできず、前工程に戻す、あるいは同じ作業を再度やり直すという形での修正が必要となります。

ミスが多くなると、繰り返しというムダな作業が増えるということであり、また手順が増えることでのムリの高まり、ムラの発生につながります。すなわち、ムダ、ムリ、ムラ問題の原因ともなるものが「ミス」ですので、ミスが起きない仕組みづくり、またRPA自動化が有効な改善施策となります。

5m  muda muri mura more miss

プロセスマイニング分析での5M特定

次に、5M、すなわち、ムダ、ムリ、ムラ、モレ、ミスを発見するためにプロセスマイニング分析の多様な分析機能のうち、どれを主に活用すべきかを簡単に説明します。

●ムダを特定する

ムダとは、観察できる発生事象としては、価値を生まない業務を行っていることでした。これは効率・生産性の低下という課題になります。

プロセスマイニング分析では、イベントログデータからas isのプロセスモデル(フローチャート)を作成した後、プロセスを構成するアクティビティのどこでどのくらいの案件が処理され、次工程に流れているかを確認する「頻度分析」をまず行います。処理量が多いところにはムダな手順が潜んでいる可能性があるためです。

次いで、プロセスのバリエーションを比較できる「バリアント分析」によって、無駄なアクティビティを行っていると思われるプロセスパターンを探していきます。また、繰り返しが発生している箇所を発見する「リワーク分析」によって、ムダが発生していないかを探っていきましょう。

●ムリを特定する

ムリは、作業負荷が高い、不適切な手順が行われることで業務が停滞・滞留するという課題を生み出します。したがって、ムリを特定するということは、プロセスにおけるボトルネックがどにあるかを特定することです。

そこで、まず「頻度分析」で処理件数の多い箇所をチェックします。処理件数が多いところは、非効率であるだけでなく、負荷が高いために停滞、滞留が発生しやすいからです。また、「パフォーマンス(時間)分析」では、主に待ち時間(前工程から次工程までの間の時間)の長い箇所を見ていきます。待ち時間が長い箇所はまさにボトルネックです。なお、併せて、対象プロセスの担当者間の業務の受け渡し関係を「ソーシャルネットワーク分析」で把握し、どの担当者間でのボトルネックが発生しやすいかを深堀りしていきます。

●ムラを特定する

ムラは、作業手順が人によって違うことであり、標準化がされていないことで、プロセス品質のバラツキが課題となります。

これは、まず「バリアント分析」で、処理パターンがどのくらいあるかを確認します。パターンが多ければ多いほど様々な手順が行われていることを示しています。また、標準プロセス(to beプロセス)との比較分析を行う「適合性検査」によって、標準から逸脱しているアクティビティにはどのようなものかを明確にしていきます。

改善施策としては、標準化を目指すことになりますのでマニュアルの整備、多用な手順を許さないようなシステム的手当てが有効でしょう。

●モレを特定する

モレは、所定の手続きを一部省略、つまりスキップしているわけですから、標準からの逸脱であり、コンプライアンス違反の課題がある業務プロセスとみなされます。

そこで、標準プロセス(to beプロセス)とイベントログから再現された現状プロセス(as isプロセス)との比較分析、すなわち「適合性検査」を行って、逸脱箇所を把握していくことになります。

改善施策としては、前述しましたが仕組みとして手順の省略ができないようにする、またコンプライアンス研修を行って担当者の意識を高める、といったことが挙げられます。

●ミスを特定する

ミスは、具体的には手順の間違い、ケアレスミス、その他各種エラーの発生であり、結果として、手戻り、繰り返し(リワーク)につながります。

ミスしているかどうかをプロセスマイニング分析で判定することは困難ですので、「頻度分析」、「パフォーマンス(時間)分析」、「リワーク分析「」などを行い、処理件数の多いアクティビティ、処理時間の長いアクテイビティで繰り返しが大量発生していないかを確認し、最終的には、現場担当者へのヒアリングや、タスクマイニングによるタスクレベルでの詳細プロセス把握を通じて、何らかのミスが起きていないかを検証していくことになります。

ミスをゼロにすることは難しいですが、RPAによる自動化を行えば理論上はミスはゼロになります。また、ユーザーインターフェイスが使いにくい、つまりユーザビリティが低いとミスを起こしやすくなりますので、ユーザビリティ改善のためのシステム修正などが求められるでしょう。

5m to process mining analysis

Process Mining can find 5 problems being called, Muda, Muri, Mura, Mo-re, Miss in the target process.

Quality management as typified by Total Quality Control (TQC) is basically about solving various problems in the execution of business operations and aiming for reform and improvement.

In particular, TQC has been actively used in manufacturing plants, but it has also been applied to a variety of industries and corporate activities, including logistics, service, purchasing and sales. In recent years, the terms TQC and quality control have become less common, but the concepts and methods are universal and still valid today.

In the field of quality control, issues and problems to be improved are grouped into three main categories, which are called “darari” (muda, mura, and muri) or “3Ms”. In addition to these three items, More(mo-re) and Miss -Mistake are added to the 3Ms and called “5Ms”

The 5Ms is, of course, a framework that can be used for process mining analysis based on event logs. In fact, it is a familiar and simple term that provides an excellent starting point for smooth analysis implementation.

So, in this article, we will outline the 5Ms and tell you how they relate to process mining analysis methods.


What is 5M?

First, let’s discuss each of the 5M’s.

Muda

Muda can be translated in English as “Inefficient”.

It is a task that takes too long to complete because there are too many steps to accomplish the objective, or because it is too complex, or because it continues to be a formality that does not need to be done in the first place. It is an activity that does not generate much or no value. As these activities are literally “wasteful,” they need to be reduced or eliminated.


Muri

Muri is “over-burdened” in English.

Even if the number of cases to be processed is very high, or even if the number of cases is not so high, the number of cases waiting to be processed is rapidly overflowing due to the low number of staff assigned to the case. The result is stagnation and backlog of business. A “bottleneck. The number of projects and processing capacity are not in balance, and an excessive load is being placed on them.


Mura

Mura is “inconsistent” in English.

Inconsistency is, simply put, Too many variations in work procedures. If manuals don’t exist, or even if they do exist, they are not being used, leaving a large part of the process to the discretion of the individual, the procedure will vary from person to person. As a result, the throughput varies widely and the quality of the output varies.

In addition, although the basic procedure exists, if there are more cases where the flow of the procedure is complicated due to exceptions to the situation in the field, it is also an inconsistent business process.

Basically, the improvement measures for inconsistency are to reduce exception handling and standardize the process.


More(mo-re)

More is “omission” in English.

It means intentionally or inadvertently skipping a procedure that should be done. For example, in the inspection process of a production line, it is a customary practice to perform only three types of inspections and then skip them even though there are four types of inspections to be performed. Since some of the inspections that should be done are cut back, this may lead to accidents when the purchaser uses the product or to a recall.

In addition, from a compliance perspective, omission of a specific activity is a clear violation of compliance in a business where the work to be done is strictly regulated.

Since a deviated process that should not be allowed, you need to consider improvement plans such as providing training and education to ensure that the process is implemented, giving a systematic framework to prevent omission, and issuing alerts through continuous monitoring.


Miss

The word “miss” is “mistake” in English. To begin with, the Japanese word “mistake” is a diversion from this English word. It also includes the meaning of “error”.

A mistake is a human error, that is, a variety of mistakes made by the staff in charge of a task. Mistakes such as entering the wrong operating procedure or inputting the wrong value cannot be left as-is, but must be corrected by returning to the previous process or redoing the same operation.

The more mistakes are made, the more repetitive and wasteful work is required, and the more steps are required, the more “muri” and “mura” are generated. In other words, the cause of waste, wastefulness and unevenness is “mistakes,” so creating a system that prevents mistakes and RPA automation is an effective improvement measure.


Identification of 5Ms in Process Mining Analysis

Next, we will briefly discuss which of the various analytical functions of process mining analysis should be primarily used to identify the 5Ms, i.e., muda, muri, mura, more and miss.

Identify muda

Muda was an observable occurrence event, which was performing work that did not generate value. This is an issue of reduced efficiency and productivity.

In process mining analysis, after creating an as-is process model (flowchart) from the event log data, we first perform a “frequency analysis” to check how many cases are processed and where in the activities that make up the process and how many cases are flowing to the next process. This is because where there is a high volume of processing, there may be wasted steps lurking.

The next step is to look for process patterns that appear to be performing wasteful activities through “variant analysis,” which allows us to compare process variations. In addition, let’s look for wastage by “rework analysis” that discovers repetitions that are occurring.

Identify muri

Unreasonable workloads and improper procedures can create challenges that cause work to stagnate. Therefore, identifying “muri” means identifying the bottleneck in the process.

Therefore, first of all, we check the areas with a large number of processes with “frequency analysis”. This is because the areas with a large number of processes are not only inefficient, but also tend to be stagnant due to a high load. In addition, the “performance (time) analysis” mainly looks at areas with long waiting times (the time between the previous process and the next process). The part with long waiting time is really a bottleneck. At the same time, “social network analysis” is used to understand the business transfer relationships among the participants in the process in question, and a deep dive is made into which participant in the process is most likely to cause a bottleneck.

Identify mura

The mura is that work procedures vary from person to person, and the lack of standardization makes variation in process quality an issue.

This is the first step in a “variant analysis” to see how many processing patterns there are. The more patterns you have, the more you have, the more various procedures are being performed. We also identify which activities are deviating from the standard by means of “conformance checking”, which is a comparative analysis against the standard process (to be process).

As improvement measures, since standardization is the goal, it is effective to prepare manuals and systematic measures that do not allow multiple procedures.

Identify more

Because More omits or skips some of the required procedures, it is considered to be a deviation from the standard and a business process with issues of non-compliance.

Therefore, we need to conduct a comparative analysis of the standard process (to be process) and the current process (as is process) reproduced from the event log, or in other words, a “conformance checking”, to identify the deviation.

As for improvement measures, as mentioned earlier, the system should be structured so that the procedure cannot be omitted, and compliance training should be provided to raise the awareness of the person in charge.

Identify miss

Miss(Mistakes) are specifically wrong procedures, careless mistakes, and various other errors that result in rework.

Since it is difficult to determine whether a mistake has been made or not through process mining analysis, we can check whether a large number of repetitions have occurred in activities with a large number of processes or in activities with long processing times by conducting “frequency analysis,” “performance (time) analysis,” “rework analysis,” etc., and finally, we can conclude that The process is verified to see if any mistakes have occurred through interviews with the people in charge on site and by understanding the detailed process at the task level through task mining.

It is difficult to reduce the number of mistakes to zero, but with RPA automation, theoretically, the number of mistakes can be reduced to zero. In addition, if the user interface is difficult to use, or in other words, if the usability is low, mistakes are more likely to occur, so the system will need to be modified to improve usability.

process mining based on 5m

プロセス発見技法の基礎

The Basics of Process Discovery Methods from BPM point of view.

今回は、BPM(Business Process Management)の視点から、「プロセス発見技法」について包括的な解説を行います。したがって、当記事における「プロセス発見技法」には、プロセスマイニングによる、イベントログに基づくプロセス発見(ABPD: Automated Business Process Discovery)だけでなく、従来の手法も含まれます。

プロセス発見の定義

プロセス発見は、現在のプロセス、すなわち現在の業務手順とそれを遂行する組織体制についての情報を収集し、それを現状プロセスモデル(as is processs model)として描くことです。

ここで、プロセスモデルとは、現実に起きている業務手順を模したものです。粒度粗く、ざっくりと描いたり、できるだけ詳細に描いたり、目的によって再現度合いは異なります。しかし、あくまでリアルな現状に似せたものであるという点をご理解ください。(例えば、戦艦のプラモデルは、実際の戦艦に可能な限り忠実に製造されていますが、縮尺も違いますし、プラモデルとして再現するため、一部省略されている箇所があったりします。)


プロセス発見の課題

プロセス発見に取り組む上で一般に以下の3つの課題があります。これらは、対象とする業務プロセスに関わる人々の認知(ものごとに対する知識や理解、判断のあり方)の制約がもたらすものです。

1 プロセスに対する断片的な知識しか存在しない

現在の企業・組織の業務プロセスの多くは、複数の部署にまたがる長く、複雑なタスクの集合体です。各タスクにはそれぞれなんらかな専門知識やスキル、経験が要求されますし、部署も異なることから、調達プロセスにしろ、受注プロセスにしろ、数十人から、大企業なら数百人が分担してプロセスを回しているのが現実です。

したがってエンド・ツー・エンド(調達プロセスなら、購買要求申請から発注、納品を経て、請求書への支払いが完了するまで)での一連のプロセスを発見するためには、多数の関係者からそれぞれが持つ断片的な情報を集め、組み立てなおす必要があります。


2 現場の担当者は俯瞰的にプロセスを捉えていない

プロセスを構成する様々なタスクを遂行する各担当者は、与えられた役割、責務のなかで日々、業務をこなすことに注力しています。例えば、購買部の担当者は、各部署から上がってくる購買申請を一件一件、内容に不備がないか確認し、不備がなければ次の工程に回し、不備があれば差し戻す、というように、案件単位で業務を行っています。

したがって、現場担当者は、「どのように業務を行っていますか」という質問には簡単に答えることができますが、多くの場合、自分が行っている業務手順がおおよそ何パターンくらいあり、それがどのような条件で分岐していくのか、といった俯瞰的な見方をしたことがないため、漏れなく業務手順を語ることは苦手です。現場担当者が業務を一番理解しているはず、というのは必ずしも真実ではなく、一般化して説明できるほど包括的に理解しているわけではないのです。


3 現場担当者はプロセスモデリングに長けていない

プロセス発見では、「BPMN(Business Process Modeling and Notation)」などの表記法を用いて、業務手順を示したフローチャートを作成するのがゴールです。このフローチャートを作成することを「プロセスモデリング(プロセスマッピングとも言う場合がある)」と呼びます。

プロセスモデリングで描かれたフローチャートはBPMN以外にもいろいろとありますが、比較的素人でも理解しやすいとはいえ、複雑なものになると、ある程度の知識や経験がないと読み解くのが難しくなります。当然ながら、プロセスモデリングの能力を持つのは、プロセスアナリストなどの専門職であり、一般のビジネスパーソンはBPMNの言葉さえ知らない人がほとんどでしょう。

さて、対象プロセスについて現場担当者にヒアリングした後、プロセスアナリストがBPMN形式のプロセスモデルを作成したら、そのプロセスモデルが現状を適切に反映しているかを現場担当者に確認する必要があります。ここで、BPMNに慣れていない現場担当者としては、そもそもプロセスモデルを理解するのに苦労するというわけです。


プロセス発見技法

プロセスモデルを作成する対象となる業務プロセスについての情報を集める方法としては大きくは3つあります。

1 根拠に基づく発見 - Evidence-Based Discovery

ー 書類分析:

対象プロセスのマニュアルや要件定義書などの関連書類から、業務の流れに関わる情報を拾います。

ー 観察調査:

現場担当者が実際に業務を行っているところに立ち会って逐次記録したり(シャドウイング)、動画に収めて後日分析を行います。

ー プロセスマイニング(ABPD: Automated Business Process Discovery):

対象プロセスがERP、CRMなど業務システム上で実行されている場合、当該システムからイベントログ(トランザクションデータ)を抽出し、プロセスマイニングツールにより、自動的にプロセスモデルを作成します。


2 ヒアリングに基づく発見 - Interview-Based Discovery

文字通り、現場担当者に時間を作ってもらい、ヒアリング(英語ではInterviewと呼ぶことが一般的)を行って業務の流れについての情報を収集します。

ここで、前項のプロセス発見の3つの課題をできるだけ克服できるよう、ヒアリングを行うプロセスアナリストは、優れたインタビュースキル、コミュニケーションスキルを有していることが求められます。


3 ワークショップに基づく発見 – Workshop-Based Discovery

ワークショップでは、1対1のヒアリングと異なり、対象プロセスに関与する複数の部署から多くの現場担当者が一堂に会し、付箋紙などを用いながら、その場で業務フローを簡易的に描いていきます。

一連のプロセスの前工程、後工程の各担当者が自分の担当タスクを説明しつつ、前後の担当者と議論をしながらプロセスの流れを明らかにしていくことができるワークショップでは、プロセス発見の3つの課題のうち、断片的な知識を補うことができますし、俯瞰的なプロセス理解もある程度深めることが可能です。

また、ワークショップに担当役員や社長が同席する場合もあります。これは、プロセス改善の取り組みが全社的である場合、会社としての本気度を示し、関係者のモチベーションを高めることに意義があります。

ただし、ワークショップは関係者一同を集め、長時間拘束する必要があることから、日程調整に骨が折れるという問題があります。


各手法の違い

前項の3つのプロセス発見技法の特徴の違いについて見てみましょう。

比較する視点としては、「客観性」、「情報の豊富さ」、「所要時間」、「フィードバックの速さ」の4つです。

comparison three process discovery methods
出所:Fundamentals of Business Process Management

客観性の視点では、エビデンスベース、すなわち関連書類や、観察調査、プロセスマイニングが優れています。ヒアリング、ワークショップは、基本的に現場担当者の「記憶」を引き出しているだけ、ということですから、主観的な要素が大きくなります。

情報の豊富さ、という視点では、現場担当者から詳細な情報を引き出せるヒアリングやワークショップが優れています。

所要時間としては、現場担当者にあまり負担をかけることのないエビデンスベースが優れています。ヒアリングやワークショップは、日程調整が大変ですし、現場担当者にそのための時間を割いてもらわなければなりません。

フィードバックの速さというのは、その場で聞き直したり確認が行えることを意味しています。これはヒアリングやワークショップが当然ながら優れています。

プロセスマイニング活用を前提としたプロセス発見の基本手順

最後に、対象となる業務プロセスがERPなどの業務システム上で大半が実行されており、プロセスマイニング活用が有効である場合のプロセス発見の基本手順を解説します。

1.書類分析

まず、分析対象となる業務プロセスに関する書類(マニュアル、要件定義書など)が存在しているかどうかを確認し、できるだけ多く収集します。もし、書類の中に、標準的な業務手順のフロー図があれば、それは「標準プロセス(to beプロセス)」として、適合性検査に役立てることができます。

2.プロセスマイニング

プロセスマイニングを実行するにあたっては、対象プロセスのイベントログをITシステムから抽出すると同時に、対象プロセスの概要を理解するための基本的な情報、すなわち、おおよその処理件数(月当たり、週当たりなど)、おおよその平均処理時間(スループット、サイクルタイム)、担当部署などについて、最低限ヒアリングする必要があります。「プロセスセットアップ」と呼ばれる作業ですが、これはおおむね短時間で済みます。

3.ワークショップ

プロセスマイニングによって自動的に再現されたプロセスフローチャートを検証し、特定された非効率な箇所、ボトルネックなどの原因を探るために、関係者を集めてワークショップを開催することが効果的です。

プロセスマイニング活用を含むプロセス発見においては、ワークショップの場はプロセスを発見するだけでなく、問題の根本原因を追及していく機会にもなります。

4.ヒアリング

ワークショップの開催が難しい場合、対象プロセスに関わる現場担当者のうち、キーパーソンや、また非効率な箇所、ボトルネックに関与している担当者と個別ヒアリングの場を設定することも有効です。

留意していただきたいのは、ここでもプロセスを発見することではなく、特定された問題の根本原因を明らかにすることに重点が置かれること、また個人の責任を問うたり責める場ではないことです。


以上の流れはあくまで標準的なものであり、プロジェクトの期間や予算、体制などを考慮して柔軟な進め方を行いましょう。

なお、プロセス発見の詳細解説は、以下の参考図書をお読みください。

『Fundamentals of Business Process Management』(Marlon DUまs、Marcello La Rosa, Jan Mendling, Hajo A. Reijers, Springer)

モビリティデータによるカスタマージャーニーマイニング時代の到来

Real Customer Journey Mining – Process Mining applied to mobility data.

現在、プロセスマイニングの主な対象は、調達や受注など社内業務のプロセス。ERPなどの業務プロセスから生データを抽出し、業務プロセス(フロー)を見える化することで、ボトルネックや逸脱などの改善ポイントを特定します。


一方、マーケティングに有効と思われる顧客行動のプロセスマイニング=「カスタマージャーニーマイニング」は、Webサイトのアクセスログを分析対象とした「オンライン・カスタマージャーニー」の事例は増えつつありますが、リアル・カスタマージャーニーの分析例はほとんど存在しません。

しかし、人々が常にスマホを存在し、移動時の交通機関などの利用時にアプリを活用するようになったことで、モビリティデータが生成されるようになりました。結果、リアルな顧客行動データに対するプロセスマイニングが可能になりつつあります。


具体的には、東京や、京都における観光客の周遊状況(どんな観光施設をどんな交通手段で巡っているか)など、観光施策に役立つ顧客行動分析がファクトに基づいて行うことができるでしょう。文字通りの「カスタマージャーニーマイニング」です。

業務プロセスの分析と同様、複数のアプリからのデータの抽出、統合が必要であり、セキュリティ、プライバシーの問題もクリアしなければなりませんが、プロセスマイニング分析の対象として今後、非常に魅力的な分野になることでしょう。

mobility data process mining
Source: Mobility as a Service

詳しくはこちらでご確認ください>> https://mobility-as-a-service.blog/

業務プロセス改善サイクルは、プロセスマイニングでどれだけ短縮できるのか?

process improvement cycle comparison

Business process improvement cycle can be shortened by process mining.

今回は、業務プロセス改善サイクルに必要な時間は、従来の手法(現場ヒアリングや観察調査など)と比較して、プロセスマイニングではどの程度短縮できるかについて考察します。

業務プロセス改善は、大きくは以下の3つの段階に分けることができます。

・プロセス可視化のための作業(データ収集からプロセスフロチャート作成まで)

・分析作業(問題抽出)

・改善作業(改善施策の検討から成果検証まで)

下図は従来手法とプロセスマイニングのそれぞれについて、上記各段階の所要時間をイメージとして示したものです。(実際の所要時間はケースバイケースですが、平均的にはおおよそ下図の長さになります。

process improvement cycle comparison

まず留意いただきたい点は、改善作業は、従来手法もプロセスマイニングも所要時間は同じということです。

改善作業においては、リーン、シックスシグマ、制約理論などの手法を用いて、分析により抽出された問題(非効率やボトルネックなど)の根本原因の解明を行い、具体的な改善方法を検討し、改善計画を策定、現場に展開。後日、改善が成果を収めているかを検証するまでが含まれます。この作業について、従来手法、プロセスマイニングのどちらも大きくは変わりません。(ただし、継続的モニタリングはプロセスマイニングでないと現実には行えませんが)

プロセスマイニングによって劇的な時間短縮効果があるのは、プロセス可視化のための作業です。

プロセスマイニングでは、まず、ITシステムからイベントログ抽出を行いますが、これは基本的に短期間で完了する作業です。また、抽出されたデータをクリーニングし、プロセスマイニングで分析できるフォーマットに変換する作業は複雑であり、相応の期間を要するものの1カ月以上っかることは稀です。さらに、プロセスの流れを描いたフローチャートの作成は、プロセスマイニングツールにイベントログデータをアップロードすれば自動で作成されます。

したがって、従来手法では依然、現場でのヒアリングや観察を行ってデータ収集を行っている期間中に、プロセスマイニングでは可視化が完了し、分析作業をスタートすることができます。

一方、従来手法では、データ収集のための現場ヒアリングや観察調査に多大な時間が必要なことに加えて、それをとりまとめるデータ整理も楽ではありません。しかも、フローチャートはモデリングツールを活用して手作業で作成しなければなりません。

従来手法でようやくプロセス可視化のための作業が完了した時には、プロセスマイニングを活用したプロジェクトではとっくにプロセス改善施策の現場展開が始まっているのです。

分析作業段階においても、プロセスマイニングツールのほうが、様々な視点で深堀り分析を行うことができ、スピーディに問題抽出が可能です。

結果として、業務プロセス改善サイクルを一回しする期間は、従来手法と比べてプロセスマイニング活用の場合は約2/3に短縮できます。(プロセス可視化作業の期間だけでは1/2以下)

外部環境が急激に変化する今、業務プロセス改善サイクルはできるだけ短縮化し、すばやく回し続けることが求められています。業務プロセス活動にプロセスマイニングを採用すれば、サイクルタイム時間の大幅短縮を成し遂げることが可能です。